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Abstract

for the development of efficient genetic vaccines.

Background: HIV circulating recombinant forms (CRFs) play an important role in the global and regional HIV
epidemics, particularly in regions where multiple subtypes are circulating. To date, several (>40) CRFs are
recognized worldwide with five currently circulating in Brazil. Here, we report the characterization of near full-
length genome sequences (NFLG) of six phylogenetically related HIV-1 BF1 intersubtype recombinants (five from
this study and one from other published sequences) representing CRF46_BF1.

Methods: Initially, we selected 36 samples from 888 adult patients residing in Sdo Paulo who had previously been
diagnosed as being infected with subclade F1 based on pol subgenomic fragment sequencing. Proviral DNA
integrated in peripheral blood mononuclear cells (PBMC) was amplified from the purified genomic DNA of all 36-
blood samples by five overlapping PCR fragments followed by direct sequencing. Sequence data were obtained
from the five fragments that showed identical genomic structure and phylogenetic trees were constructed and
compared with previously published sequences. Genuine subclade F1 sequences and any other sequences that
exhibited unique mosaic structures were omitted from further analysis

Results: Of the 36 samples analyzed, only six sequences, inferred from the pol region as subclade F1, displayed BF1
identical mosaic genomes with a single intersubtype breakpoint identified at the nef-U3 overlap (HXB2 position
9347-9365; LTR region). Five of these isolates formed a rigid cluster in phylogentic trees from different subclade F1
fragment regions, which we can now designate as CRF46_BF1. According to our estimate, the new CRF accounts for
0.56% of the HIV-1 circulating strains in Sao Paulo. Comparison with previously published sequences revealed an
additional five isolates that share an identical mosaic structure with those reported in our study. Despite sharing a
similar recombinant structure, only one sequence appeared to originate from the same CRF46_BF1 ancestor.

Conclusion: We identified a new circulating recombinant form with a single intersubtype breakpoint identified at

the nef-LTR U3 overlap and designated CRF46_BF1. Given the biological importance of the LTR U3 region,
intersubtype recombination in this region could play an important role in HIV evolution with critical consequences

Background

The immense genetic variability of HIV-1 viruses is con-
sidered the key factor that frustrates efforts to halt the
virus epidemic and poses a serious challenge to the
development and efficacy of vaccines. Like other human
positive-sense RNA viruses, HIV has a high mutation
rate as a result of the error-prone nature of their reverse
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transcriptase (3 x 107> mutations per nucleotide per
replication cycle)[1,2]. This high rate of mutation
coupled with the increased replication capacity of the
virus (10.3 x 10° particles per day) [3], allows for the
accumulation and fixation of a variety of advantageous
genetic changes in a virus population, which are selected
for by the host immune response and can resist newly
evolving host defense. Recombination is another poten-
tial evolutionary source that significantly contributes to
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the genetic diversification of HIV by successfully repair-
ing defective viral genes and by producing new viruses
[4]. To date, HIV-1 viruses are classified into four phy-
logenetic groups: M, O, N and P, which most likely
reflect four independent events of cross-species trans-
mission from chimpanzees [5-7]. The M group (for
main), responsible for the majority of viral infection
worldwide, is further subdivided into nine subtypes (A-
D, F-H, ] and K), among which subtypes A and F have
been further classified into two sub-subtypes [5]. More-
over, early sequencing studies have provided evidence of
recombination between genomes of different HIV sub-
types [8,9]. Such interclade recombinant strains are con-
sistently reported from regions where two or more
clades are predominant. Recombinant strains from at
least three unlinked epidemiological sources, which
exhibit identical mosaic patterns, have been classified
separately as circulating recombinant forms (CRFs)
[10,11]. Currently, there are more than 40 defined CRFs
http://www.hiv.lanl.gov that are epidemiologically
important as subtypes [12]. In addition to the known
CRFs, a large number of unique recombinant viruses,
which are called unique recombinant forms (URFs),
have been characterized worldwide [13]. Together, CRFs
and URFs account for 18% of incident infections in the
global HIV-1 pandemic [12]. HIV-1 subtypes, CRFs and
URFs show considerably different patterns of distribu-
tion in different geographical regions [12,14].

In Brazil, the number of persons living with HIV
reached an estimated number of 730,000 cases at the
beginning of 2008 (2008 Report on the Global AIDS
Epidemic). Like in other European countries and in
North America, HIV-1 subtype B is a major genetic
clade circulating in the country. However, the existence
of other subtypes such as F1, C, B/C and B/F, has been
consistently reported [15-23]. Data from recent studies
of the near full length genomes (NFLG) of HIV have
provided evidence of Brazilian CRF strains designated as
CRF28_BF, CRF29_BF, CRF39_BF, CRF40_BF and
CRF31_BC [17,24-26]http://www.hiv.]lanl.gov/content/
sequence/HIV/CRFs/CRFs.html.

In 2006, Thompson and colleagues [27] published two
NFLG of similar BF1 mosaic viruses from patients in
Rio de Janeiro 94BR-RJ-41 (GenBank: AY455781) and
99UFRJ-16 (GenBank: AY455782). Here, we describe the
HIV-1 NFLG of an additional six isolates with similar
BF1 mosaic genomes from patients without evidence of
direct epidemiological linkage.

Methods

Study population

The six samples reported in this study were from indivi-
duals residing in Sdo Paulo in the southeast region of
Brazil and considered the most populous city in South
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Table 1 Characteristics of the six patients included in this
study.

Sample ID Age/years Sex CD4 count, Viral load,
cells/mm? copies/mL

06BR_FPS561 44 F! 81 721
07BR_FPS625 35 F 621 4734
07BR_FPS742 47 F 140 123617
07BR_FPS783 42 M 209 80751
07BR_FPS810 38 F 208 49240
07BR_FPS812 45 F 362 5694

F; Female, M; Male

America. The rationale for selection of these samples
has been previously reported [28]. The data, including
age, gender, number of CD4-positive T cells, and viral
load were obtained from medical records and shown in
Table 1. No evidence of direct epidemiological linkage
could be established.

Amplification and sequencing of HIV-1 DNA

The genomic DNA used for the PCR analyses was
extracted using the QIAamp blood kit (Qiagen) accord-
ing to the manufacturer instructions. The NFLGs from
five overlapping fragments were obtained by PCR using
the Platinum Tag DNA polymerase (5 U/pl) (Invitrogen)
and determined by a previously reported method
[16,17]. To rule out the possibility of Tag-generated
recombinants, an additional PCR product of 670 bp,
which spans most of the viral LTR, was generated in
separate PCR reactions using previously described pri-
mers and conditions [29]. All amplification reactions
were done in duplicate to eliminate PCR artifacts, ensur-
ing that sequenced NFLG were not assembled from het-
erogeneous DNA targets. To test for PCR carry over
contamination, extraction and PCR negatives were run
in each experiment. Both complementary DNA strands
from each amplicon were directly sequenced by cycle
sequencing using a variety of internal primers, BigDye
terminator chemistry and Taq polymerase on an auto-
mated sequencer (ABI 3130, Applied Biosystems Inc.,
Foster City, CA), essentially according to the protocols
recommended by the manufacturer. Fragments for each
amplicon were assembled into contiguous sequences on
a minimum overlap of 30 bp with a 97-100% minimal
mismatch and edited using the Sequencher program 4.7
(Gene Code Corp., Ann Arbor, MI).

Screening for recombination events and identification of
breakpoints

Sequences were screened for the presence of recombina-
tion patterns by the jumping profile Hidden Markov
Model (jpHMM) [30] and further confirmed using the
bootscanning method [31] implemented by SimPlot
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3.5.1 for Windows [32]. The following parameters were
used in this method: window size, 250 bp; step size, 20
bp; the F84 model of evolution (Maximum likelihood
(ML)) as a model to estimate nucleotide substitution;
transition\transversion ratio, 2.0; and a bootstrap of 100
trees. In addition, the significant threshold for the boot-
scan was set at 90%. The alignment of multiple
sequences, including reference sequences representing
subtypes A-D, F-H, ] and K http://hiv-web.lanl.gov, were
performed by the CLUSTAL X program [33] followed
by manual editing in the BioEdit Sequence Alignment
Editor program [34]. Gaps and ambiguous positions
were removed from alignment. Positions of crossover
sites were defined based on the distribution of informa-
tive sites supporting the two incongruent topologies that
maximize the Xz value [35], a method implemented in
Simplot.

Phylogenetic tree analysis

Phylogenetic relationships between the individual
sequence types were determined by two methods: the
neighbor-joining (NJ) algorithm of MEGA v.4 [36] and
the ML of PHYML v.2.4.4 [37]. For NJ, trees were con-
structed under the maximum composite likelihood sub-
stitution model and bootstrap resampling was carried
out 1000 times for analysis by the MEGA software. ML
phylogenies were constructed using the GTR + I + G
substitution model and a BIONJ starting tree. Heuristic
tree searches under the ML optimality criterion were
performed using the NNI branch-swapping algorithm.
The approximate likelihood ratio test (aLRT) based on a
Shimodaira-Hasegawa-like procedure was used as a sta-
tistical test to calculate branch support. Comparison of
tree topologies between subgenomic regions was per-
formed using the algorithm described by Nye et al [38].
Trees were displayed using the program MEGA v.4
package. The nucleotide similarities were estimated
using the maximum composite likelihood model imple-
mented by MEGA v.4 software.

GenBank accession numbers

GenBank accession numbers for the proviral NFLG
sequences reported in this study are (06BR_FPS561:
HMO026455, 07BR_FPS625: HM026456, 07BR_FPS742:
HMO026457, 07BR_FPS783: HM026458, 07BR_FPS810;
HMO026459, 07BR_FPS812: HM026460).

Results

Recombinant Analysis

A total of six strains (06BR FPS561, 07BR FPS625, 07BR
FPS742, 07BR FPS783, 07BR FPS810, and 07BR FPS812)
preliminarily classified as subclade F1 by sequence ana-
lysis of a partial pol region were corroborated by further
phylogenetic analysis of the complete coding sequences
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and part of the LTR region. Analysis of the proviral
NFLGs revealed all isolates retain intact reading frames
for a majority of their genes and no gross deletions or
rearrangements were observed. The NFLG sequence
from each strain was initially investigated using jpHMM
which showed them to display identical mosaic struc-
tures with a single intersubtype breakpoint identified at
the nef-U3 overlap (HXB2 position 9347-9365). The
recombinant genomes essentially consisted of subclades
F1 and B as parental sequences. Fragments identified as
subclade F1 were found to cover almost all of the gen-
ome coding regions while fragment classified as subtype
B consisted of a short sequence comprising the last part
of the 3’ LTR. Furthermore, the analysis also revealed
that all the six isolates had a mosaic sequence pattern
nearly identical to the previously published Brazilian
BF1 isolates 94BR-RJ-41 (GenBank: AY455781) and
99UFRJ-16 (GenBank: AY455782). Based on these preli-
minary analyses, we reanalyzed all six sequences using
the bootscanning method with three different subtype
reference sequences (subtype B, F and C) obtained from
the full-length alignment of the HIV sequence database
http://hiv-web.lanl.gov. In agreement with the results
obtained by jpHMM, bootscanning analysis confirmed
similar mosaic structures with almost identical break-
point positions within these six isolates (Figure 1). The
BF1 intersubtype transitions were estimated at nucleo-
tides 9347-9365, based on the HIV HXB2 numbering
system, by mapping the informative site and % maximi-
zation. To further test for recombination, ML phyloge-
netic trees were inferred for the regions of nucleotide
sequence on either side of the breakpoints detected by
bootscan method (Figure 1). This analysis corroborates
the results from the bootscan and thus provided unam-
biguous evidence for a single recombination event sup-
ported by high aLRT values among the six isolates.

To rule out the possibility of Tag-generated recombi-
nant artifacts, an additional PCR product of 670 bp cov-
ering most of the viral LTR was generated in a separate
PCR reaction using previously described primers and
conditions [29]. The results confirmed the recombina-
tion breakpoint obtained using complete viral sequences.

Phylogenetic analysis of regions bounded by the
crossover sites

As shown in Figure 2a, phylogenetic reconstructions for
F1 specific regions bound by the crossover site, as
defined by bootscan analysis, were compared with repre-
sentatives of all subtype and sub-subtype references
available in the HIV database (year 2008) and with other
subclade F1 published sequences. The result of the ML
tree revealed all our sequences clustered on a branch of
subclade F1 and further into one separate sub-branch
intrinsic to South America, particularly Brazil (100%
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Figure 2 An exploratory ML tree calculated from fragments between breakpoints of sequences identified in this study (indicated by
black circles), published sequences with identical breakpoints (indicated by triangle) and reference sequences of subtype A-D, F-H, J
and K http://hiv-web.lanl.gov. (A) Tree of the viral genomes corresponding to the subclade F1 segments (HXB2 nucleotides 623-9347). (B) Tree
of the viral genomes corresponding to the subtype B segments in the LTR region (HXB2 nucleotides 9348-9719). For clarity purposes, the tree
was midpoint rooted. The approximate likelihood ratio test (aLRT) values of > 90% are indicated at nodes. The scale bar represents 0.05
nucleotide substitution per site.
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aLRT). During analysis of the tree topology of the F1
region depicted in Figure 2a, all new sequences, except
isolate 06BR FPS561, formed a single cluster with two
previously published Brazilian isolates (FI.
BR.01.01BR125 and F1.BR.01.01BR087) supported by
100% aLRT values. Isolate 06BR FPS561 formed a rigid
subcluster (94% aLRT) with two strains (F1.JP.2004.
DR6190 and F1.JP.2004.DR6082) recently isolated in
Japan and believed to be derived from Brazil [Tatsumi
et al, unpublished study]. Additionally, the Brazilian iso-
lates 94BR-RJ-41 and 99UFR]J-16 from Rio de Janeiro
formed a separate branch (<90% aLRT) distinct from
the other branches. To test the stability and branching
orders of the F1 fragment in our sequences, ML trees
were independently made from gag-pol and env
sequences using the same multiple genome alignment
generated for the full length of F1 fragment (Figure 3a
&3b). The phylogenetic trees from both regions received
an overall topological score of 78.5% according to the
algorithm of Nye et al [38]. The computed topological
score of the clusters that include all our isolates except
06BR FPS561 in both regions was 100%. Isolate 06BR
FPS561 placed the gag-pol region within the F1.JP.2004.
DR6190, F1.JP.2004.DR6082, 07BR844 and 94BR-RJ-41
cluster with an 84% of aLRT value, while env grouped
with another subcluster that included 06BR564 and
02BR082 (aLRT 94%). The computed topological score
of this cluster in both regions was 30% with a branch
length mismatch of 53.5%. Similarly, isolates 94BR-R]J-41
and 99UFRJ-16 changed their topological positions over
the gag-pol and env regions of their genomes (aLRT
<90%). Thus, the shifting of topological positions of iso-
late 06BR FPS561, 94BR-RJ-41 and 99UFR]J-16 into two
different phylogenetic trees is suggestive evidence of
intrasubtype recombination event or other factors, such
as convergence. Furthermore, the monophyletic cluster
of isolates F1.JP.2004.DR6190 and F1.JP.2004.DR6082
depicted in Figure 2a was also supported in trees of
both subgenomic regions (Figure 3a &3b).

The phylogenetic tree based on the fragment charac-
terized as subtype B by bootscan from all of the six iso-
lates is shown in Figure 2b. The resulting tree topology
agrees with the accepted HIV-1 group M phylogeny and
the majority of the internal nodes are supported with
high aLRT values. Despite the fact that B fragments in
these isolates have shorter sequences and some group
M variants cannot resolve some of the internal nodes,
all of them can resolve the terminal nodes.

Molecular rate of CRF46_BF1

Five of the current six BF1 isolates described in this
study (designated as CRF46_BF1 in the Los Alamos
database) were detected in 36 samples selected from 888
samples infected with HIV-1 F1 based on pol
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subgenomic fragment sequencing [28]. Based on these
results, the molecular distribution of the CRF46_BF1
accounts for 0.56% of the HIV-1 circulating strains in
Séo Paulo.

Identification of Related HIV-1 Strains in the database

A search for similar recombination patterns in a
sequence database revealed the occurrence of three iso-
lates from Brazil (GenBank: AY455781; 94BR-RJ-41,
AY455782; 99UFRJ-16 and DQ358801; 01BR087) and
two isolates from Japan (GenBank: AB480299; F1.
JP.2004.DR6082 and AB480301; F1.JP.2004.DR6190). It
is to be noted that, as a result of our current analysis,
the sequences F1.JP.2004.DR6082, F1.JP.2004.DR6190,
and 01BR087, which are characterized as pure subclade
F1 [17] [Tatsumi et al, unpublished study], showed
strong phylogenetic evidence for recombination among
subclade F1 and subtype B, suggesting that a revised
classification of these isolates in the GenBank and the
HIV databases is appropriate.

Next, we aimed to compare the recombinant profiles
of our sequences to other HIV BF1 genomes at the
nucleotide level to illustrate the distribution of their
breakpoints. This was done by retrieving the full-length
genomes from all BF1 and CRF_BF1 isolates available in
the Los Alamos database. The automated jpHMM was
used for mapping breakpoints with significant recombi-
nation signal (Figure 4). Our analysis showed that two
variants (GenBank:DQ085869; BREPM11931 and
DQO085870; BREPM11931) annotated as BF1 recombi-
nants in the database, appear ancestral to subtype B
strains. The recombination mapping of the nef-U3 over-
lap detected in our sequences was also found in
CRF39_BF1 and four other URF BF1 recombinants. In
addition, most of the sequences have undergone multi-
ple rounds of recombination events. These data suggest
that this part of the nef-U3 overlap is a possible ‘hot
spot’ for recombination.

Fragment B from all six isolates shared 96% sequence
identity with the B stretch in the nef-U3 overlap from
the Brazilian 93br029 which was isolated in 1993. Thus,
we assume that the initial recombination event hap-
pened several years before 1993.

Partial LTR nucleotides alignment features

A detailed scrutinization of the partial nucleotide align-
ment of the 3’ LTR regions relative to HXB2 and con-
sensus sequences of other HIV subtypes (Year 2005) is
shown in Figure 5. Conform to the consensus sequence
GGGRNNYYCC, additional NF-xB binding sites were
found in three strains from the current study. A sub-
clade F1 specific insert of 13-15 [39] nucleotides down-
stream of the NF-xB"" binding site was not observed in
our sequences and added further support to our results,
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indicating that our sequences are not genuine F1 sub-
subtypes but BF1 recombinant isolates. Absence of this
nucleotide signature was also observed in isolates F1.
JP.2004.DR6082, F1.JP.2004.DR6190, and 01BR087,
which have previously been classified as pure subclade
F1 sequences.

Discussion

In the present study, we have characterized six NFLG
sequences that posses mosaic genomic structure identi-
cal to the previously described strains, 94BR_R]J_41 and
99UFR]_16 with a genome of predominantly subtype F1
and the nef-U3 overlap portion of the LTR of subtype B
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(Figure 1). Moreover, three additional full-length gen-
ome sequences, which were initially characterized as
pure subclde F1, now clearly appear to harbor a small
fragment derived from subtype B in their LTR in a posi-
tion identical to the breakpoint reported in our
sequences. In phylogenetic tree of the full length and
subgenomic regions of F1 subclade segment, isolates F1.
JP.2004.DR6082 F1.JP.2004.DR6190 (recovered from
japanese patients), 94BR-RJ-41 and 99UFRJ-16

(recovered from patients residing in Rio de Janeiro)
position outside the single cluster formed by isolates
01BRO87 and all BF1 recombinants identified in this
study, except 06BR FPS561 (recovered from patients
residing in Sdo Paulo) (Figure 2a&3a). The discordant
branching between gag-pol and env sequences of 06BR
FPS561, 94BR-RJ-41 and 99UFR]J-16 isolates can be
explained by the occurrence of another recombination
events after the spread of their common ancestor.
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Generally, our results suggest that the 11 recombinant
sequences were not the result of one, but at least three
independent recombination events that produce similar
simple recombinant structures. In particular, BF
sequences isolated in Japan and Rio de Janeiro may have
originated from different BF recombinant ancestors than
those sequences isolated in Sdo Paulo. Thus, by exclud-
ing all the isolates that branch out of the main cluster,
we provide a total of 6 sequences (01BR087 and 5
sequences described in this study) that meet the formal
requirement for assigning a new CRF46_BF1. Again, in
the phylogenetic tree of the F1 subclade fragment, the
two recently isolated Japanese strains (F1.JP.2004.
DR6190 and F1.JP.2004.DR6082) formed a rigid subclus-
ter with isolate 06BR FPS561 and branch outside the
subcluster formed by the other five viruses described in
this study, but still strongly position within the main
Brazilian subclade F1 sequences. This result suggests
that the viruses found in the Japanese patients share a
distinct common ancestry originating in Brazil. It is pos-
sible that the heavy traffic of people from both countries

across international borders could have facilitated the
spread of these viruses in both countries.

Based on the criteria of inclusion of the samples in
this study, we were able to show that the CRF46_BF1
accounts for 0.56% of the HIV-1 circulating strains in
Sao Paulo, similar to the frequency of subclade F1
reported from this region [28]. The apparently low pre-
valence of the CRF46_BF is ecological and may not be
due to inherent properties of the virus itself but rather
to the chance results of subtype B (a founder virus in
Brazil), where it is introduced and consequently estab-
lished into our HIV infected population before the new
CRF and other subtypes are introduced.

Our analysis also showed that the recombination of
subclade F1 with subtype B at the nef-U3 overlap por-
tion of the LTR appears to be a recurrent finding
because it has also been found in CRF39_BF1 and other
unique HIV-1 recombinants [17,25,40,41]. In HIV, the
existence of recombinational hot spots is common given
that they have been described in cell-free systems [42]
and exists in the dimer initiation sequence of the HIV-1
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5’-untranslated region and some preferential sites across
the viral genome [43-46]. Several studies have demon-
strated that RNA hairpin structures strongly correlate
with recombination hotspots in various regions of the
HIV-1 genome[42,43,46,47]. Thus, based on the later
mechanisms, it is possible that hairpins promote recom-
bination by hampering the RT during reverse transcrip-
tion or direct interaction with template [46,48,49].

The HIV-1 LTR region is composed of various cis-act-
ing regulatory components needed for proviral DNA
synthesis, integration of the nascent viral cDNA into the
host cell genome, transcription and modulation of HIV
genes expression [50,51]. Early reports showed that the
LTR region is made up of three segments designated as
U3, R and U5 [52]. The U3 modulatory region entirely
overlaps with nef [53] and is essentially required during
reverse transcription for first template transfer and inte-
gration of the provirus into the host genome. Moreover,
this region seems to regulate the transcription pathway
of HIV viral promoters by directly or indirectly interact-
ing with a large number of cellular proteins, including
NF-AT, Ets-1, USF, AP-1, COUP and Sp1 [54]. Thus,
substitution through recombination of the nef-U3 over-
lap portion of the LTR with that of a genetically differ-
ent subtype, as in our isolates, may affect the binding of
both cellular and viral transcription factors. In turn, this
may influence viral transcription levels, potentially
enhancing the propagation of a recombinant virus lead-
ing to the persistance of a circulating form.

Several studies reported successful results in inhibiting
HIV-1 replication by using synthetic siRNAs targeting
either viral RNA sequences or cellular mRNAs encoding
proteins that are critical for HIV-1 replication [55-58].
The study conducted by Yamamoto and his colleagues
[59] showed a considerable sustainable suppression of
HIV replication and control of CC-chemokine produc-
tion associated with nef expression in HIV-1-infected
macrophages following transfection of short hairpin
RNA (shRNA) by a lentivirus vector system expressing
HIV-specific ShARNAs. These results allowed the authors
to conclude that lentivirus-vector-based RNA interfer-
ence of the U3-overlapping region of HIV-1 nef may
have potential usefulness as a genetic vaccine against
HIV-1 infection. Furthermore, Ludwig and collaborator
[60] proved that HIV-1 contains an antisense gene in
the U3-R regions of the LTR responsible for both an
antisense RNA transcript and proteins. This antisense
transcript has tremendous potential for intrinsic RNA
regulation because of its overlap with the beginning of
all HIV-1 sense RNA transcripts by 25 nucleotides. The
novel HIV antisense proteins encoded in a region of the
LTR that has already been shown to be deleted in some
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HIV-infected long-term survivors and represent new
potential targets for vaccine development [60,61].

Given the biological relevance described to the U3
region, it is probable that the intersubtype recombina-
tion in this region could play an important role in HIV
evolution with critical consequences for the develop-
ment of efficient genetic vaccines.

During phylogenetic analysis, the B fragments of our
six strains and the other five strains (marked with a tri-
angle symbol in Figure 2b), which showed identical
mosaic genomic structures, were clearly distinct from
available South American subclade F1 sequences, parti-
cularly of Brazilian origin. This result coupled with the
absence of the 13-15 nucleotides insertion downstream
of the NF-xB"™ binding site, which is typical for sub-
clade F1, agrees with the interpretation that the segment
at the nef-U3 overlap portion of the LTR of the eleven
isolates originates from subtype B. Unlike the marked
clustering of the eleven isolates in the tree generated
from the F1 fragment, the tree of fragment B depicted
in Figure 2b shows them to fall in different sub-
branches within subtype B reference sequences. This
result is most likely explained by the short lengths of
the fragment B sequences.

Conclusion

In this study, we describe the NFLG sequence analysis
from six HIV-1 isolates sampled from Sao Paulo and
five other published isolates that had an identical break-
points between subclades F1 and B at the nef-U3 over-
lap portion of LTR. Six of these sequences (five from
this study and one from other published sequences) are
currently classified as a member of the CRF46_BF1
family. Our data is relevant to guide diagnosis and vac-
cine development. We conclude that recombination is a
potentially important mechanism that significantly con-
tributes to HIV genetic variability with serious implica-
tions for diagnosis, drug treatment and optimal vaccine
development.
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