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Abstract

Adenoviral vectors have been utilized for a variety of gene therapy applications. Our group has incorporated biolu-
minescent, fluorographic reporters, and/or suicide genes within the adenovirus genome for analytical and/or thera-
peutic purposes. These molecules have also been incorporated as capsid components. Recognizing that
incorporations at either locale yield potential advantages and disadvantages, our report evaluates the benefits of
transgene incorporation versus capsid incorporation. To this end, we have genetically incorporated firefly luciferase
within the early region 3 or at minor capsid protein IX and compared vector functionality by means of reporter
readout.

Introduction
Adenoviral (Ad) vectors have been utilized for a variety
of gene therapy applications. Their utilities are attribu-
ted to the unparalleled efficiency of gene transfer in
both in vitro and in vivo contexts [1,2]. Our group,
along with others, have incorporated imaging reporters
of either bioluminescent [3] or fluorescent nature [4-8],
as well as suicide genes within the adenovirus genome
as a transgene for analytical and/or therapeutic pur-
poses. These molecules have also been incorporated as
capsid components [3,8]. Determining the best locale
for imaging modalities and/or therapeutic genes could
influence the design of Ad and conditionally replicative
adenoviruses (CRAds) for monitoring of viral replica-
tion, gene transfer, and biodistribution thus improving
these vectors for clinical applications.
Recognizing reporter transgene incorporation or cap-

sid incorporation yields potential advantages and disad-
vantages; our report compares and evaluates the benefits
of imaging via transgene incorporation versus imaging
via capsid incorporation. In this regard, when interpret-
ing CRAd imaging end point data the results are often
based on detection of virus-encoded expression opposed
to direct viral particle analyses [9]. Imaging of viral

infection via transgene expression from the early region
3 (E3) of replication-competent Ad is dependent on
cells producing viral progeny due to activation of trans-
gene by the E3 promoter [10-13]. Therefore, one specu-
lated disadvantage of imaging through transgene
expression is that transgene imaging is thought to be
less accurate with respect to CRAd biodistribution, pro-
geny production, and virus accumulation in tumors [9].
On the other hand, one potential advantage of capsid-
incorporated reporter imaging is that capsid based
reporter imaging is thought to be more accurate with
respect to direct particle localization as well as imaging
capacity seen in combination with gene expression [9].
One potential advantage of reporter imaging within Ad
E1 or E3 is that transgene expression allows the incor-
poration of complex imaging reporters, whereas in some
cases the capsid loci (i.e. protein IX [pIX]) may not be
compatible. Capsid incorporation of the reporter gene
must be compatible with the pIX loci and subsequent
CRAd capsid assembly. In the event, that ligand incor-
poration is not compatible with pIX, the resulting
CRAds might have defective pIX particles and/or cap-
sids. These resulting virus progeny could have reduced
virus stability in addition to being temperature sensitive
and/or non-infectious [14,15].
In order to evaluate capsid incorporated imaging ver-

sus transgene imaging, we have genetically incorporated
firefly luciferase (Luc) as a transgene within the deleted
E3 region of wild type Ad, or at the 3’-end of minor
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capsid pIX gene, respectively. In order to determine the
benefits of moiety expression at pIX versus that of E3,
the Luc protein was expressed under the control of the
native promoters at either locale. We examined viral
production, virus replication, Luc expression, and activ-
ity with these constructs in vitro and in vivo.

Results
Construction of adenoviruses presenting Luc within a
capsid protein or expressing Luc as a transgene
In our recent studies, we incorporated various reporter
genes at the 3’-end of pIX or within the deleted E3 region
[7,16]. In order to evaluate the benefits of genetically
incorporating an imaging modality at either pIX or E3,
we created two unique viruses. In brief, the Luc gene was
subcloned in frame into a pIX shuttle vector through
NheI restriction sites, a Flag epitope is contained between
the pIX and the Luc genes. This shuttle vector, pIX-Luc
was homologously recombined with an Ad vector. This
resulted in an Ad genome containing a pIX-Luc carboxy-
terminal fusion gene. The pIX-Luc protein was expressed
under the control of the native pIX promoter. Our pIX-
modified Ad only expresses the pIX fusion protein since
the native pIX genes have been replaced with the modi-
fied pIX gene. The Ad-wt-pIX-Luc genome was trans-
fected into HEK293 cells to produce viable viruses. In
addition, we constructed an Ad genome containing the
Luc gene expressed as a transgene within the E3 region
in place of the wild type E3 region. The native E3 promo-
ter drives Luc protein expression. In brief, firefly Luc was
cloned in frame into a pShuttle vector using restriction
sites XbaI/SalI. The linearized pShuttle-E3-Luc was
homologously recombined with an adenovirus vector.
The Ad-wt-E3-Luc genome was transfected into HEK293
cells to produce viable viruses.
Plaque formation was observed at approximately ten to

fourteen days post-transfection with either virus in
HEK293 cells. The time observed for plaque formation is
consistent to that of plaque formation for other viruses.
However, we observed that Ad-wt-pIX-Luc took longer
to upscale for cesium chloride (CsCl) purification than
Ad-wt-E3-Luc. The physical and infectious titers were
determined for both virus preps. The physical titer was
determined for Ad-wt-pIX-Luc to be 3.8 × 1012 VP/ml;
the physical titer for Ad-wt-E3-Luc was determined to be
3.2 × 1012 VP/ml. The infectious titers were determined
for both viruses as well, Ad-wt-pIX-Luc and Ad-wt-E3-
Luc yielded infectious particle (IP) titers of 2.0 × 1011IP/
ml and 1.4 × 1010 IP/ml. The VP/IP ratios for Ad-wt-
pIX-Luc and Ad-wt-E3-Luc were 19 and 233. A standard
VP/IP ratio of unmodified Ad ranges from ~10-30 [17].
Analysis of viral DNA replication
In order to determine DNA replication properties of
Ad-wt-pIX-Luc and Ad-wt-E3-Luc the following

experiment was performed. Ad E4 copy numbers were
analyzed after cells were infected with virus. In brief, 10
IP/cell of Ad-wt-pIX-Luc, Ad-wt-E3-Luc, Adwt, or non-
replicative Ad (expressing luciferase as a transgene)
were used to infect the human lung adenocarcinoma
cell line (A549). Infected cells and medium were col-
lected on 0, 2, 4, and 6 days post-infection. Total DNA
was extracted from infected cells and medium (which
was used to incubate infected cells) and analyzed for Ad
viral E4 DNA copy number (Figure 1). The E4 copy
number was normalized to human DNA concentration.
The day 0 E4 copy number was obtained from the cell
lysate and medium at 2 hours post- infection, this value
would serve as a base line for viral replication. At 2 days
post-infection, the E4 copy number for Ad-wt-pIX-Luc,
Ad-wt-E3-Luc, and Adwt were observed to be approxi-
mately 1 × 108 copies per hDNA, this was substantially
higher than the day 0 copy number values. At 2 days
post-infection, the non-replicate Ad E4 copy number
was similar to that of the day 0 non-replicative Ad E4
copy number value. At 2 days post-infection, the overall
comparison between non-replicative Ad, Ad-wt-pIX-
Luc, Ad-wt-E3-Luc, and Adwt was statically significant.
On day 4 post-infection, we observed a slight decrease
in the Ad E4 copy number for all of the vectors com-
pared to values seen on day 2 post-infection. At 4 days
post-infection, the overall comparison between non-
replicative Ad, Ad-wt-pIX-Luc, Ad-wt-E3-Luc, and
Adwt was statically significant. On day 6 post-infection,
we observed a decrease in the Ad E4 copy number for
all of the vectors as compared to day 4, however; the E4
copy number values for all of the replicative vectors
remained substantially higher than the day 0 values. At
6 days post-infection, the overall comparison between
non-replicative Ad, Ad-wt-pIX-Luc, Ad-wt-E3-Luc, and
Adwt was statically significant. Taken together, these
data indicate that Ad-wt-pIX-Luc and Ad-wt-E3-Luc
were replicating in a cancer line in vitro, this replication
is comparable to Adwt. Ad E1 copy numbers were also
determined for all viruses at all time points post-infec-
tion (data not shown), the E1 copy numbers correlated
with E4 copy numbers for all viruses at all time points
post-infection.
Analysis of protein expression associated with capsid-
incorporated Luc or E3-Luc expression
In order to determine if the capsid modification affects
transduction efficiency of pIX molecules, we performed
Western blot analysis on cells infected with Ad-wt-pIX-
Luc and Ad-wt-E3-Luc, respectively. A549 cells were
infected with viruses at a multiplicity of infection (MOI)
of 75 IP/cell. Cells were collected after no viral infection
and at 24, 48, and 72 hours post-infection (h.p.i.). The
cells were lysed and the lysates were analyzed via Wes-
tern blot using an anti-Flag, anti-luciferase and anti-pIX
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antibodies. As previously mentioned the Ad-wt-pIX-Luc
vector contains a Flag epitope at the pIX carboxyl termi-
nus. As shown in Figure 2A, lysates extracted from cells
infected with Ad-wt-pIX-Luc yielded a protein band of
approximately 15 kDa, the expected protein size of pIX-
Luc should be ~ 74 kDa. However, due to the Flag
detection, this result indicates a portion of the pIX-Luc
protein is expressed in A549 cells after Ad-wt-pIX-Luc
infection. This “pIX-Luc” protein is expressed at 24
hours post Ad-wt-pIX-Luc infection (Figure 2A, lane 1),
this protein has increased expression at 48 and 72 hours
post Ad-wt-pIX-Luc infection (Figure 2A, lanes 2 and
3). As expected by means of anti-Flag antibody, cell
lysate from cells infected with Ad-wt-E3-Luc resulted in
no detectable pIX protein (Figure 2A, lanes 4-5). Ad-wt-
E3-Luc contains wild type pIX protein absent of the
Flag tag addition. As a negative control, lysates from
non-infected cells were subjected to Western blot analy-
sis via Flag antibody. pIX was not detected in non-
infected lysates (Figure 2A, lane 7).
Identical cell lysates were subjected to Western blot

analysis with anti-luciferase antibody (Figure 2B).
Lysates from cells infected with Ad-wt-pIX-Luc yielded
a protein band of approximately 15 kDa that appeared
to be a degradation product of pIX-Luc. This Western

Blot indicates that that the “pIX-Luc” protein is
expressed at 24 hours post Ad-wt-pIX-Luc infection
(Figure 2B, lane 1), this protein has increased expression
at 48 and 72 hours post Ad-wt-pIX-Luc infection (Fig-
ure 2B, lanes 2 and 3). Cell lysate collected from cells
infected with Ad-wt-E3-Luc resulted in a detectable pro-
tein band that resolved at ~74 kDa, this band corre-
sponds to the expected size of luciferase protein (Figure
2B, lanes 4, 5 and 6).
Identical cell lysates were subjected to Western blot

analysis with anti-pIX antibody (Figure 2C). Cell lysates
of cells infected with Ad-wt-pIX-Luc or Ad-wt-E3-Luc
yielded a predominant protein band of approximately 15
kDa (Figure 2C, lanes 3-7), this band corresponds to the
expected size of wild type pIX. We noticed a substantial
difference with respect to the amount of wild type pIX
incorporation in the Ad-wt-E3-Luc compared to the
incorporation of modified pIX-Luc in the Ad-wt-pIX-
Luc virus. Uninfected cell lysate was negative for pIX
expression (Figure 2C, lane 1). Taken together, this data
indicates that Luc protein is expressed after infection
with Ad-wt-E3-Luc. In addition, this data also indicates
that a truncated version of the pIX-Luc protein is
expressed after infection with Ad-wt-pIX-Luc. This
truncation or cleavage of the pIX-Luc maybe due to Ad

Figure 1 Analysis of in vitro DNA replication of Ad-wt-pIX-Luc and Ad-wt-E3-Luc. A549 cells were infected at an MOI of 10 IP/cell of Ad-
wt-pIX-Luc, Ad-wt-E3-Luc, Adwt, or non-replicative virus. On days 0, 2, 4, and 6 post-infection media from infected cells were collected along
with total DNA from infected cells. DNA was extracted from media and cell lysate was isolated from cells according to a standard protocol,
using DNeasy tissue kit. In brief, E4 copy number was determined by Real-Time quantitative PCR. The E4 copies were normalized against human
DNA concentration. These data samples were analyzed using a LightCycler 480, software 1.5.0SP1. The values are expressed as the mean ±
standard deviation of three replicates. The asterisk (*) indicates a P value = 0.018. The asterisks (**) indicates a P value = 0.002. Comparisons were
performed using analysis of variance followed by the Tukey-Kramer multiple comparisons test.
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protease, this protease is expressed under replicative
conditions [18,19]. Despite, the cleavage observed with
pIX fusion protein in the presence of Ad; these trun-
cated species have been shown to be incorporated
within the Ad capsid in addition to retaining functional-
ity [13].
Analysis of pIX-Luc expression in a stable cell line
In order to determine if we could stably express pIX-
Luc in the absence of Ad and potential Ad protease, we
created a stable 293-cell line expressing pIX-Luc pro-
tein. A lentiviral vector co-expressing pIX-Luc and pur-
omycin N-acetyltransferase was used to transduce 293
cells and populations of the stably transduced cells were

enriched with puromycin selection. Expression was con-
firmed by flow cytometric detection of luciferase (data
not shown). In addition, Western blot analysis on the
cell lysate from these cells was performed in order to
determine if the pIX-Luc protein was expressed in the
293-pIX-Luc cell line (Figure 3). The pIX-Luc epitope
was also engineered to express a Flag tag. In brief, 10 μg
of protein was subjected to Western blot analysis via
anti-Flag antibody. pIX-Luc resolved at ~70 kDa. Similar
findings were observed with anti-Luc antibody (data not
shown). These data indicate that the pIX-Luc protein
was expressed as a full-length protein in the absence of
any cleavage.

Figure 2 Time course expression of pIX-Luc and wild type IX. Western blot analysis of pIX-Luc or pIX expression in cells infected with Ad-
wt-pIX-Luc or Ad-wt-E3-Luc. A549 cells were infected with 75 IP/cell of Ad-wt-pIX-Luc, Ad-wt-E3-Luc or uninfected. Cell lysates were collected
after 24, 48, and 72 h.p.i. A) 10 μg of protein was boiled in Laemmli sample buffer for 5 minutes and resolved on 4 to 15% sodium dodecyl
sulfate-polyacrylamide gel (SDS-PAGE) and transferred to polyvinylidene difluoride (PVDF) membrane. Staining was performed with an anti-Flag
antibody. Lanes 1-3 are lysate from Ad-wt-pIX-Luc-infected cells at 24 hours (Lane 1), 48 hours (Lane 2) or 72 hours (Lane 3). Lanes 4-6 are lysate
from Ad-wt-E3-Luc-infected cells at 24 hours (Lane 4), 48 hours (Lane 5) or 72 hours (Lane 6). Lane 7 is lysate analyzed from uninfected cells
(unif). The arrow indicates pIX-Luc protein. B) The samples were treated in an identical fashion. Staining was performed with an anti-luciferase
antibody. Lanes 1-3 are lysate from Ad-wt-pIX-Luc infected cells at 24 hours (Lane 1), 48 hours (Lane 2) or 72 hours (Lane 3). Lanes 4-6 are lysate
from Ad-wt-E3-Luc infected cells at 24 hours (Lane 4), 48 hours (Lane 5) or 72 hours (Lane 6). The solid arrow indicates pIX-Luc protein. The
dashed arrow indicates Luc protein. C) The samples were treated in an identical fashion. The staining was performed with anti-pIX. Lane 1
represents uninfected lysate (unif). Lanes 2-4 are lysate from Ad-wt-pIX-Luc-infected cells at 24 hours (Lane 2), 48 hours (Lane 3) or 72 hours
(Lane 4). Lanes 5-7 are lysate from Ad-wt-E3-Luc-infected cells at 24 hours (Lane5), 48 hours (Lane 6), or 72 hours (Lane 7). The solid arrow
indicates pIX. The dashed arrow indicates truncated pIX-Luc. Signals for Western blots A-C were visualized by diaminobenzidine tablets
according to the manufacture’s instructions.
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Analysis of direct in vitro capsid-associated Luc activity or
E3-Luc expression
In order to verify enzymatic activity of the Luc protein
associated with purified Ad-wt-pIX-Luc or Ad-wt-E3-
Luc, direct in vitro Luc assay was performed in the pre-
sences of D-Luciferin substrate (containing ATP). Cell
lysis buffer (control), CsCl gradient purified Ad-wt-pIX-
Luc (1 × 1010 VP) or Ad-wt-E3-Luc (1 × 1010 VP) virus
were added to a 96-well plate. 80 μl of luciferase sub-
strate was added to the plate according to the published
protocols (Promega), and luciferase activity was mea-
sured as relative light units (RLU) in the samples on a
multiplate luminescent reader. RLU were measured for
each sample following the addition of luciferase sub-
strate. As shown in Figure 4, the addition of D-Luciferin
substrate to purified Ad-wt-pIX-Luc resulted in 1 × 106

RLU/VP, as compared with purified Ad-wt-E3-Luc viral
particles (P = 0.002) or cell lysis buffer, which resulted
in 1 × 102 RLU/VP and 1 × 102 RLU. These results
demonstrate that the luciferase protein incorporated
into the capsid in the form of pIX-Luc protein was
functional and the luciferase activity could be detected
without viral infection and subsequent protein expres-
sion. As shown in Figure 4, the addition of luciferase
substrate to purified Ad-wt-E3-Luc resulted in 1 × 102

RLU/VP. No luciferase activity was expected for Ad-wt-
E3-Luc virus in the absence of viral infection.
Validation of Luc expression with luciferase activity in
vitro in a cancer cell line
In order to validate the in vitro luciferase expression of
Ad-wt-pIX-Luc or Ad-wt-E3-Luc, in vitro luciferase
assays were performed in A549 cells (Figure 5). For this
experiment, A549 cells were infected with non-replica-
tive Ad (expressing Luc as a transgene in the deleted E1

region), Adwt, Ad-wt-pIX-Luc or Ad-wt-E3-Luc viruses
at an MOI of 100 IP/cell. At 24, 48 and 72 hours post-
infection (h.p.i.) the cells were harvested and lysed. The
lysates were quanitated for total protein and equal pro-
tein amount was used for luciferase activity assay. At 24
h.p.i. there was no luciferase observed in lysates, which
had been infected with Adwt virus. At 24 h.p.i., we
observed modest luciferase expression in cell lysates
extracted from cells infected with non-replicative Ad
(expressing Luc as a transgene in the deleted E1 region).
Whereas, at 24 h.p.i. we observed substantial Luc
expression from lysates extracted from cells infected
with Ad-wt-pIX-Luc or Ad-wt-E3-Luc. At 24 h.p.i., the
overall comparison between non-replicative Ad, Ad-wt-
pIX-Luc, Ad-wt-E3-Luc, and Adwt was statically signifi-
cant. At 48 h.p.i. Luc expression in cell lysates infected
with non-replicative Ad (expressing Luc as a transgene
in the deleted E1 region) remained similar to that of 24
h.p.i. At 48 h.p.i. we noticed a substantially decrease in
luciferase expression in cell lysates which had been
infected with Ad-wt-pIX-Luc; whereas Luc expression
from lysates extracted from Ad-wt-E3-Luc-infected cells
remained similar to that of 24 h.p.i. At 48 h.p.i., the
overall comparison between non-replicative Ad, Ad-wt-
pIX-Luc, Ad-wt-E3-Luc, and Adwt was statically signifi-
cant. At 72 h.p.i., we noticed a substantially decrease in
luciferase expression in cell lysates which had been
infected with Ad-wt-pIX-Luc as compared to 48 h.p.i.;
whereas Luc expression from lysates extracted from Ad-
wt-E3-Luc infected cells remained similar to that of 24
h.p.i. At 72 h.p.i., the overall comparison between non-
replicative Ad, Ad-wt-pIX-Luc, Ad-wt-E3-Luc, and
Adwt was statically significant. Luc expression from
lysates infected with Ad-wt-E3-Luc remained constant

Figure 3 pIX-Luc expression in a stable cell line. pIX-Luc expression was determined in a stable cell line expressing pIX-Luc via Western blot
analysis. 10 μg of protein was boiled in Laemmli sample buffer for 5 minutes and resolved on 4 to 15% SDS-PAGE and transferred to PVDF
membrane. Western blot analysis was performed with an anti-Flag antibody. Signal was visualized with enhanced chemiluminescence according
to the manufacture’s instructions. The solid arrow indicates pIX-Luc.
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throughout the entire time course of the experiment. In
total, this experiment demonstrates that the Luc pro-
teins are expressed in infected cells.
Evaluation of Luc activity from Luc protein expressed at
pIX or E3 in vivo
Wild type Ad viruses replicate after injection in human
tumors, in this case producing luciferase proteins. This
experiment allowed us to determine temporal changes
in reporter gene expression as well as quantitative differ-
ences related to locale expression. In order to determine
qualitative and quantitative differences relative to repor-
ter gene expression associated with pIX or E3 incor-
poration we performed in vivo bioluminescence imaging
with our respective viruses (Figure 6). For these experi-
ments, A549 cells were injected on both flanks of nude
mice. Tumors were allowed to form for approximately
two weeks. After tumor formation, mice were injected
intratumorally with Ad-wt-pIX-Luc in the right tumor
nodule and with Ad-wt-E3-Luc in the left tumor nodule.
At one-hour post viral-injection, the mice were injected
in the peritoneal cavity with D-Luciferin substrate and
imaged 1 hour later as well as periodically for fifteen
days. On day 0, we measured baseline Luc (luciferase
counts/second) expression in the tumor. We observed a
slightly higher luciferase signal in tumors injected with
Ad-wt-E3-Luc as compared to tumors injected with Ad-
wt-pIX-Luc. Images captured on days one through four
also showed a higher trend of luciferase activity in mice
injected with Ad-wt-E3-Luc virus versus Ad-wt-pIX-Luc

virus. Throughout the duration of the experiment, we
observed a consistent pattern whereby intratumoral
injections of Ad-wt-E3-Luc yielded a higher luciferase
signal as compared to that of injections of Ad-wt-pIX-
Luc. However, these comparisons were not statistically
significant when performed using longitudinal and
cross-sectional statistical techniques. We observed a
maximal signal between day 2 and 6 with respect to
tumors injected with either virus.

Discussion
Ad vectors have been used for a variety of therapeutic
applications. This study compares in vitro and vivo ima-
ging of luciferase protein following Luc incorporation
on the capsid protein IX or as a transgene within the
deleted E3 region of Ad. We demonstrated that when
tested in vitro or in vivo, both viruses express functional
luciferase protein at either the pIX or E3 locale. In addi-
tion, we showed that throughout the in vivo imaging
study the Luc expressed under the control of the E3
promoter yields higher reporter gene activity compared
to that of Luc expressed in the pIX loci. In the in vivo
imaging study the signal magnitude difference between
the Luc activity from Luc incorporated within the E3
locale or the pIX locale was markedly higher on imaging
days one through four.
Adenovirus has been exploited for cancer gene ther-

apy by means of viral particle monitoring by incorporat-
ing imaging modalities within the Ad genome [20-25].

Figure 4 Direct in vitro analysis of luciferase activity of an adenovirus with a capsid-incorporated Luc protein or E3 expressed Luc
protein. Luciferase activities were measured from 1010 VP of CsCl gradient purified Ad-wt-pIX-Luc viral particles, Ad-wt-E3-Luc viral particles, or
cell lysis buffer. Values are expressed as relative light units/VP. The values are expressed as the mean ± standard deviation of three replicates. The
asterisk indicates a P value of 0.002 for the comparison of Ad-wt-pIX-Luc to Ad-wt-E3-Luc, which was performed using the two-group t test.
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Traditionally, these molecules have been incorporated
into the genome as transgenes, typically within the E1
region [26-29]. Also along these same lines, to establish
the safety of oncolytic viruses imaging modalities have
been incorporated within the wild type or CRAd gen-
omes. For example, Ono et. al., incorporated the gene,
which encodes for enhanced green fluorescent protein
(EGFP) in the deleted E3 region of a wild type Ad. This
report demonstrated that strong EGFP fluorescence was
detected in these viral-infected cells in a replication-
dependent manner. Through a series of analyses, this
report conveyed that EGFP, controlled by the Ad major
late promoter, provides a valuable tool whereby nonin-
vasive imaging can be accomplished to monitor Ad
replication for preclinical uses and ultimately human
applications. CRAds were envisioned and proposed for
cancer gene therapy as an alternative for surgery, radia-
tion and chemotherapy [30-32], however; to date the
use of CRAds or conventional therapies as single agents
to combat cancer have showed limited efficacy for can-
cer therapy [33-35]. In this regard, researchers have
employed a series of combination therapies which utilize
CRAd agents in combination with conventional thera-
pies (i.e., surgery, radiation, chemotherapy, and cell
therapies) to yield improved pre-clinical and clinical

cancer therapy [36-41]. With respect to the clinical use
of CRAds, there is speculation as to whether transgene
expression could provide endpoint data related to viral
replication, spread, tropism specificity, viral persistence,
and virus-host cell interaction. In this regard, research-
ers had begun to attempt to improve on Ad monitoring
systems, thereby labeling capsid particles with imaging
modalities. Many groups have incorporated imaging
modalities in capsid locales such as pIX or pV
[3,6,42,43]. For instance, our group as well as Meulen-
broek and colleagues have demonstrated the feasibility
of incorporating the fluorescent moiety EGFP within the
adenovirus capsid pIX. These studies illustrated that
labeled particles allow qualitative assessments of viral
particle localization within cells in vitro as well as in
vivo [4,5].
Our more recent studies demonstrated that we could

incorporate herpes simplex virus type 1 thymidine
kinase (HSV-tk) at the pIX locale whereby it could
metabolize conversion of substrate permitting an ima-
ging signal. This capacity allowed assessments of CRAd
parameters in vivo related to viral persistence. Based on
these findings, we sought to explore the full potential of
the capsid incorporation approach for utility in CRAd
imaging analysis. Along those same lines, we

Figure 5 In vitro analysis of luciferase activity of an adenovirus with a capsid-incorporated Luc protein or E3 expressed Luc protein.
A549 cells were infected with 100 IP/cell of non-replicative Ad, Adwt, Ad-wt-pIX-Luc, or Ad-wt-E3-Luc viruses. At 24, 48, or 72 h.p.i., the cells
were harvested and the cell lysates were collected and subjected to protein quanitation and luciferase assay. Values are expressed as mean ±
standard deviation of three replicates. The asterisks (**) indicates a P value = 0.001. Comparisons were performed using analysis of variance
followed by the Tukey-Kramer multiple comparisons test.
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incorporated a fusion of HSV-tk-Luc within the Ad pIX.
This study was perform in a non-replicative Ad, how-
ever, we were able to demonstrate functional HSV-tk
and luciferase activity in an in vitro and in vivo context
[3]. This study illustrated dynamic imagining in the con-
text of our capsid-incorporated platform, and will be
transitioned to a CRAd context.
Fluorescent and other imaging modalities have been

tested at the capid or transgene loci, respectively, but
very little information has been acquired to compare an
identical modality at multiple sites within the Ad

genome [44]. Therefore, we sought to compare trans-
gene expression of Luc versus that of capsid-incorpo-
rated Luc under the control of the Ad native promoters.
Our data indicates that in vitro DNA replication rates
and in vitro DNA replication levels of Ad-wt-E3-Luc
and Ad-wt-pIX-Luc were comparable to the Adwt vec-
tor (Figure 1). In addition, the in vitro DNA replication
rates and in vitro DNA replication levels of Ad-wt-E3-
Luc and Ad-wt-pIX-Luc were comparable to one
another (Figure 1). This is an important finding in that,
this particular capsid modifications or transgene

Figure 6 Bioluminescent imaging analysis of mice infected with an adenovirus containing a capsid-incorporated Luc protein or
expressing Luc protein within the E3 region. Athymic nude mice were implanted on both flanks with subcutaneous xenografts of A549 cells.
After tumor formation, mice were injected intratumorally with Ad-wt-pIX-Luc in the right tumor nodule and with Ad-wt-E3-Luc in the left tumor
nodule. Mice were injected with D-Luciferin prior to imaging; images were captured over a 15 day period. Values are expressed as mean ±
standard deviation of values obtained from 7 mice. Regions of interest were drawn around the tumor and the total counts (photons) were
summed in the tumor. The total counts in each region of interest were normalized to total acquisition time to obtain counts/sec. The tumors
depicted in this figure are a representative of one mouse in the study. The instrument used is the IVIS Xenogen with Living image 3.1 software.
Longitudinal analysis was performed using mixed models repeated measures analysis. The model used in this analysis included terms for
luciferase group (Ad-wt-pIX-Luc, Ad-wt-E3-Luc), time (Day), and the interaction between luciferase group and time. Cross-sectional analyses for
luciferase group comparisons were performed using the paired t-test (where the analyses included only mice that have Ad-wt-pIX-Luc and Ad-
wt-E3-Luc measurements), and the two-group t-test (where the analyses included data for all mice but do not account for the fact that data on
different days come from the same mice) or the two-group t-test assuming unequal variances when needed. All statistical tests were two-sided
and were performed using a significance level of 5% (i.e. alpha = 0.05). Statistical analyses were performed using SAS (version 9.1.3; SAS Institute,
Inc., Cary, NC).
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modification does not appear to dramatically impair
virus replication.
Our Western blot analyses indicate that the Luc pro-

tein is expressed from the Ad-wt-E3-Luc virus at its
expected molecular mass (Figure 2B). Western blot ana-
lyses indicate that the capsid associated Luc is effected
by capsid incorporation into the pIX locale. Our pIX-
modified Ad only expresses the pIX fusion protein since
the native pIX gene has been replaced with the modified
pIX gene. Our protein analysis of pIX-Luc indicates that
a truncated version of pIX-Luc is being produced after
infection into A549 cells (Figure 2). Results from our
laboratory also demonstrate a similar finding with
respect to proteolytic pIX cleavage products observed
after protein analysis of various viruses (Ad5-wt-IX-
EGFP, Ad5-wt-IX-mRFP1, and Ad5-wt-IX-mRFP1-E3-
V-EGFP) containing pIX conjugated fluorescent tags
[13]. The Ad genome encodes a gene for cysteine pro-
tease that recognizes consensus sequence motifs (M,I,L)
XGG/X and (M,I,L)XGX/G contained in precursor pro-
teins, where X is any amino acid. This protease cleaves
the residue at the site of “/”[18,19]. The adenovirus pro-
tease plays a role in protein maturation of adenoviral
proteins by cleaving precursors of IIIa, VI, VII, μ and
terminal proteins [18,19,45]. We found that the protein
sequence for Luc contains a few putative cleavage sites
for Ad protease. Being that Luc is a universally utilized
maker for in vitro and in vivo applications; its utility in
a capsid-incorporated context is informative. To further
confirm that, Ad protease is involved in the cleavage of
pIX-Luc we analyzed protein from a stable cell line
expressing pIX-Luc. These results confirmed that the
expression of full-length pIX-Luc (Figure 3), therefore
the proteolytic cleavage seen from cells infected with
Ad-wt-pIX-Luc is likely a result of Ad protease (Figure
2A-C). The Luc expressed from the E3 region is not
affected by Ad proteases (Figure 2B), Luc expressed
from the E3 region is localized in the cytoplasm, so this
soluble form is not cleaved by Ad protease [46]. How-
ever, pIX-Luc is relocalized from the cytoplasm to the
nucleus during viral assembly. Ad cysteine protease
localization is nuclear; the protease activity is observed
in the nucleus fraction.
We would note that Ad-wt-pIX-Luc yields direct func-

tional activity of incorporated Luc protein as expected
(Figure 4). It is important to note that the truncated
version of pIX-Luc is capable of being assembled within
the viral capsid (data not shown) and able to generate
direct in vitro Luc enzymatic activity in the presence of
Luc substrate and ATP (Figure 4). We speculate that
the truncated pIX-Luc must contain the enzyme active
site allowing for Luc activity. In contrast, Ad-wt-E3-Luc
needs to be infected within cells to generate functional
Luc protein and activity (Figure 5). At 48 and 72 h.p.i.,

there appears to be a significant difference between rela-
tive light units observed after infection with Ad-wt-E3-
Luc as compared to that of Ad-wt-pIX-Luc (Figure 5).
Due to the fact that the Luc protein is expressed on

the pIX capsid and is constitutively active on the viral
capsid in the presence of substrate and ATP, we
expected that imaging observed on day 0 would yield
substantially higher luciferase activity in tumors injected
with Ad-wt-pIX-Luc as compared to that of Ad-wt-E3-
Luc (Figure 6). On day 0, in vivo Luc signal generated
from tumors injected with Ad-wt-pIX-Luc was similar
to that of Luc signal generated from tumors injected
with Ad-wt-E3-Luc. This finding may be due to the lack
of signal intensity. In this instance, it might be possible
to distinguish pIX-associated signal with a stronger ima-
ging molecule such as HSV-tk [8]. It is also plausible
that the number of pIX-Luc molecules incorporated on
the Ad viral particles may not be substantial enough to
generate a higher signal in vivo as compared to the Ad-
wt-E3-Luc virus, even though in our in vitro study we
could observe substantial Luc activity in the direct in
vitro context after analysis of direct Ad-wt-pIX-Luc par-
ticles (Figure 4). It is likely that pIX-Luc incorporation
can vary from batch to batch with each preparation of
Ad-wt-pIX-Luc (data not shown). Therefore, it is likely
that the pIX-Luc integrity can be improved through
additional virological methods or other molecular meth-
ods such as the addition of linkers.
In vivo, we observed that tumors injected with the Ad-

wt-E3-Luc virus yielded higher Luc counts/second com-
pared to tumors injected with Ad-wt-pIX-Luc.
Although, the difference between the signal magnitudes
between groups was not statistically significant, we
observed a trend of a higher signal magnitude when
tumors were injected with Ad-wt-E3-Luc versus that of
Ad-wt-pIX-Luc (Figure 6). The in vivo result was differ-
ent from what was observed in A549 cells under in vitro
conditions (Figure 5). The differential outcome between
the in vitro and in vivo results confirms that often times
these two systems does not actually mimic one another,
due to the complexities of in vivo model systems (i.e.
viral lateralization of virus in a monolayer cell system
versus that of viral lateralization in a tumor model
system).
Although, experimental conditions were maximally

optimized significant differences may have been difficult
to observe due to a variety of factors such as injection
techniques, natural tumor heterogeneity, virus lateraliza-
tion, and/or mouse sample size. In addition, we must
comment that differences seen between the viruses are
likely to be attributed to relative promoter activity. Dif-
ferences seen with respect to luciferase activity might be
affected because at the E3 locale, Luc is expressed most
like its native form whereas Luc protein expressed at
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the pIX locale is conjugated to the pIX protein, possibly
yielding a slightly diminished signal. When designing
vectors to express imaging or therapeutic genes, limits
of the gene its self and the locale its self are of the
utmost importance.
We did not observe temporal differences between

tumors injected with either virus, however temporal pat-
terns observed in this study herein were similar to that
seen with Ad-wt-pIX-monomeric red fluorescent protein
1 [16]. In our 2006 report, maximum signal seen with
respect to tumors injected with Ad-wt-pIX-monomeric
red fluorescent protein 1 was observed within 2 and 6
days and diminished around day 10 [16]. These results
were also consistent with those seen in a clinical setting,
generally there is a peak in circulating viral DNA
detected which is typical observed over several days and
diminishes over time to baseline, indicating viral clear-
ance [47-49]. We speculate that Luc signals would have
returned to baseline levels on or about day 20, however
due to excess tumor burden in a few the mice we con-
cluded the experiment on day 15.
In this report, we demonstrate that both Ad-wt-pIX-

Luc and Ad-wt-E3-Luc replicate comparable to one
another and similar to other vectors in our laboratory
(Figure 1). We demonstrate that Ad-wt-pIX-Luc and
Ad-wt-E3-Luc express luciferase protein at either locale
(Figure 2) and that functional luciferase activity is
retained in vitro (Figure 4 and 5) as well as in vivo (Fig-
ure 6), whereby the virus expressing Luc within the E3
locale yields a higher result with respect to reporter
readout as compared to the Ad-wt-pIX-Luc virus. Our
group has attempted to optimize the Ad genome incor-
poration of therapeutic genes and reporter genes for
improved Ad and CRAd virus readout and therapeutic
efficacies. This study provides a road map forward for
optimization of CRAd design. Although the luciferase
signals generated from Ad-wt-pIX-Luc and Ad-wt-E3-
Luc were not statistically different throughout the dura-
tion of the in vivo experiment (Figure 6), there was a
consistent trend whereby Ad-wt-E3-Luc yielded a higher
signal throughout the duration of the in vivo experi-
ments. This trend observed whereby the E3 imaging is
superior to capsid-incorporated imaging is important. In
a clinical setting, the achievement of maximal signal
threshold is necessary for sensitive orthotopic in vivo
applications. This would be a clear advantage for expres-
sing imaging motifs within the E3 locale. As it relates to
the capsid-incorporated imaging strategy, one disadvan-
tage associated with capsid-incorporated imaging, might
be proteolysis associated with Ad precursor proteins/
capsid-incorporation. Truncated protein observed in our
study was not detrimental to our study, however this
possibility must be considered thoroughly when design-
ing vectors. An advantage to expressing imaging motifs

within a capsid-incorporated locale is that direct virus
particle locale (i.e. virus biodistribution) can be visua-
lized. Our study herein, examined intratumoral imaging,
thus this paradigm was not directly observed. However,
we demonstrated that capsid-incorporated imaging was
comparable to that of E3 imaging. Therefore, in order
to achieve maximal imaging threshold or therapeutic
efficacy, one likely approach may be the combination of
incorporation of dual imaging modalities or therapeutic
gene incorporation at multiple genome locales (i.e. E3
and pIX). In summary, if multiple parameters are
desired, such as imaging readout and therapeutic effi-
cacy, placement of the most critical modality within the
E3 region is likely the best option.
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