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Abstract

have a role in the events associated with virus infection.

HIV-1 Vpr, a nonstructural viral protein associated with virus particles, has a positive role in the efficient transport of PIC
into the nucleus of non-dividing target cells and enhances virus replication in primary T cells. Vpr is a 96 amino acid
protein and the structure by NMR shows three helical domains. Vpr has been shown to exist as dimers and higher order
oligomers. Considering the multifunctional nature of Vpr, the contribution of distinct helical domains to the dimer/
oligomer structure of Vpr and the relevance of this feature to its functions are not clear. To address this, we have utilized
molecular modeling approaches to identify putative models of oligomerization. The predicted interface residues were
subjected to site-directed mutagenesis and evaluated their role in intermolecular interaction and virion incorporation.
The interaction between Vpr molecules was monitored by Bimolecular Fluorescence complementation (BiFC) method.
The results show that Vpr forms oligomers in live cells and residues in helical domains play critical roles in
oligomerization. Interestingly, Vpr molecules defective in oligomerization also fail to incorporate into the virus particles.
Based on the data, we suggest that oligomerization of Vpr is essential for virion incorporation property and may also

Background

HIV-1 vpr gene encodes a protein of 96 amino acids with
a predicted molecular weight of 14 kDa, which is con-
served in both HIV and SIV [1]. Vpr is packaged into
assembling virions by binding to the p6 domain of viral
p55G28 precursor protein. The presence of a functional
Vpr is necessary for the efficient translocation of the pre-
integration complex (PIC) into the nucleus and subse-
quent infection of primary monocytes/macrophages and
other non-dividing cells [2-4]. Analysis of HIV-1 acces-
sory genes (including vpr) in long-term non-progressors
and asymptomatic patients suggests that defects in acces-
sory genes are related to non-progressive status [5,6]. In
this regard, the presence of defective or mutated vpr qua-
sispecies has been shown to be associated with long-term
non-progressive mothers [6-8]. Though vpr is selected
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against in tissue culture, selection for an intact Vpr
occurs in vivo [9,10]. This finding suggests that vpr is
required for optimal virus production and pathogenesis
in vivo [11]. These observations clearly indicate the
importance of Vpr in viral pathogenesis and disease pro-
gression.

HIV-1 Vpr is known to oligomerize both in vitro and in
vivo [12,13]. This has been demonstrated by using cells in
which Vpr was expressed either in the context of transfec-
tion of plasmid DNAs or through virus infection. Similar
observations have also been reported with the purified
Vpr protein generated using the prokaryotic expression
system. Vpr has been shown to exist as dimers, trimers,
tetramers and higher order multimers [13]. In general,
protein oligomerization is thought to be an advantageous
feature for the stability of the protein, interaction/binding
with other proteins, allosteric control and the establish-
ment of higher-order complexity [14]. HIV-1 Vpr, a non-
structural protein, is incorporated into the virus particles
and possesses several characteristic features that are
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known to play important roles in HIV-1 replication and
disease progression. Vpr interacts with both viral and cel-
lular host proteins, which are essential for Vpr-mediated
functions. For instance, Vpr interacts with Gag-p6 and
packages in the virus particles and virion-incorporated
Vpr is known to positively regulate infection of non-
dividing cells and enhance virus production in T cells
[4,11,15,16]. However, it is not clear whether oligomer-
ization of Vpr is required for virion incorporation and/or
for its interactions with cellular proteins.

Vpr also has a well-defined role in apoptosis, cell cycle
arrest and dysregulation of immune functions [17-19].
Many of the Vpr functions are carried out by virion-asso-
ciated Vpr similar to de novo synthesized Vpr, suggesting
that incorporation of Vpr into virus particles is an impor-
tant event in HIV-1 biology. While the structure of Vpr
based on X-ray crystallography is not yet available, bio-
chemical analysis and NMR studies suggest that Vpr is
composed of three alpha helices connected by loops
[13,20-22]. Site-directed mutagenesis studies targeting
single residues in Vpr indicated that amino acids in the N
terminal region including the helical domains are essen-
tial for stability and virion incorporation and a region
comprising the Helix III and the C terminal region deter-
mines the nuclear transport of Vpr [23-26]. With respect
to oligomerization, it has been suggested that a leucine-
zipper type mechanism is likely involving helix III based
on the analysis of a peptide corresponding to the C-ter-
minal region by NMR [27]. However, the structure of
helix IIT in the peptide is different from that observed in
the full-length protein [20]. Furthermore, mutagenesis
studies have implicated additional amino acids in the
hydrophobic core of the protein [12] in addition to a
direct role for residue 44 in oligomerization through dele-
tion. Thus, the roles of specific domains and residues
involved in oligomerization are not yet defined.

To gain a better understanding of Vpr oligomerization
and its role in virion association, we have utilized Bimo-
lecular Fluorescence complementation (BiFC) analysis.
This involves a chimeric protein strategy in which HIV-1
Vpr is fused to either N- or C-terminus fragment of the
Venus protein. Upon expression and formation of dimers
in live cells the Venus will emit fluorescence that can be
detected by microscopy and flow cytometry. Such an
approach combined with specific alterations in Vpr based
on NMR structure and modeling have allowed us to eval-
uate the domains and residues essential for Vpr oligomer-
ization and its relevance in virion incorporation. The
results from the studies presented here indicate that Vpr
molecules with distinct mutations in helical domains I, I
and III dysregulate Vpr oligomerization and alter the abil-
ity of Vpr to incorporate into virus particles.
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Materials and Methods

Cells and plasmid

HeLa, and 293T cells were grown in DMEM supple-
mented with 10% FCS, 1% glutamine and 1% penicillin-
streptomycin. HeLa cells were obtained from NIH, AIDS
reagent program. Proviral construct pNL43AVpr was
generated by mutating the start codon of Vpr and verified
by sequencing and westernblot analysis. Vpr expression
plasmids were generated as described before [28]. All the
mutant constructs were sequenced to verify the integrity
of the mutations. For BiFC assays, sequences encoding
the amino (residues 1 to 173, VN) or carboxyl (residues
155 to 238, VC) fragments of Venus fluorescence protein
(template generously provided by Dr. Ronald Montelero,
University of Pittsburgh) were fused to the N terminus of
HIV-1 Vpr via a six-alanine linker and HA-tag for detec-
tion. All plasmids were isolated using a QIAGEN Max-
iprep kit (QIAGEN, Valencia, CA), and the specific
mutations were confirmed by DNA sequencing.

Vpr dimer interface using docking model

Structural dimer models of Vpr were generated using
ClusPro [29,30] and RosettaDock software [31] based on
the full length monomer NMR structure of Vpr (PDB
id:1m8l) [20]. First an approximate orientation of the
dimer was obtained using the ClusPro server. The homo-
multimeric docking option and DOT method [32,33]
starting with 25000 initial conformations were employed.
Of the resulting 10 best docking conformations, two
models comprising antiparallel and parallel conformation
based on best fit to the experimental data were selected.
Each of these conformations was used as input into the
Rosetta Dock server as the starting conformations for
refinement via local docking of [31]. The hexamer model
was generated using Cluspro server based on the mono-
mer structure that comprised residues 15-78. The flexible
N and C-termini were excluded since their inclusion
resulted in unfeasible structural models where N and C
termini formed the interface. All models are available
upon request.

Expression of Vpr molecules by immunoblot

HEK293T cells were cotransfected with Vpr expression
plasmid using L Lipofectamine. Forty-eight hours post-
transfection, Cells were washed twice with PBS and lysed
in RIPA buffer containing 50 mM Tris (pH 7.5), 150 mM
NaCl, 1% Triton X-100, 1 mM sodium orthovanadate, 10
mM sodium fluoride, 1.0 mM phenylmethylsulfonyl fluo-
ride, 0.05% deoxycholate, 10% sodium dodecyl sulfate,
aprotinin (0.07 trypsin inhibitor unit/ml), and the pro-
tease inhibitors leupeptin, chymostatin, and pepstatin (1
pg/ml; Sigma). Cell lysates were clarified by centrifuga-
tion, and total cell lysates (50 pg) were separated on a 12%
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sodium dodecyl sulfate-polyacrylamide gel (SDS-PAGE)
electrophoresis gel, transferred, and immunoblotted with
anti-HIV-1 p24 for Gag and anti-HA for Vpr. The blots
were developed using an ECL kit (Amersham Biosci-
ences, Piscataway, NJ).

BiFC Flow cytometry

Thirty-six hours post transfection 293T cells were
washed with PBS and fixed in 3.7% formaldehyde at room
temperature for 15 minutes, and washed and resus-
pended in 200 pl of FACS buffer. Samples were analyzed
using Epics-XL (Beckman Coulter, Miami, FL) with mini-
mum of 40000 gated events acquired for each sample, and
percent BiFC positive cells was calculated using Flow Jo
software.

Immunofluorescence

HeLa cells were used to perform all immunofluorescence
and microscopy assays. Thirty-six hours post transfec-
tion, cells were washed with PBS and fixed in 3.7% form-
aldehyde at room temperature for 10 minutes, and
washed and permeabilized with 0.5% Triton X-100 for an
additional 10 minutes. After washing 3 times with PBS,
cells were blocked with 5% BSA at room temperature for
1 hour followed by incubation with primary antibody
(HA or Vpr; 1:200 dilution) for 1 hour at room tempera-
ture and incubated with rabbit anti-mouse or mouse anti-
rabbit IgG Rhodamine (RRX) (1:400; Jackson ImmunoRe-
search, West Grove, PA) for 1 hour at room temperature.
Cells were mounted with VECTASHIELD mounting
media containing DAPI (Vector Laboratories, Burl-
ingame, CA). Immunofluorescence analysis was per-
formed using a fluorescence microscope with Nikon
SPOT camera (Fryer, Huntley, IL) and images were pro-
cessed using MetaMorph software (Universal Imaging
Corporation, Downington, PA).

Vpr-Gag interaction by BiFC and virion incorporation

Oligomerization of Vpr in live cells was evaluated by BiFC
methods. HeLa cells were seeded in 6-well plates with
glass slides and transfected with combinations of Vpr¥t,
Vpr mutants and Gag expression plasmids with their
respective VN or VC combinations or with control plas-
mids using Lipofectamine. Forty hours post-transfection,
cells were washed with PBS and fixed with 2% paraform-
aldehyde. Cells were mounted with VECTASHIELD con-
taining DAPI (Vector Laboratories, CA) and fluorescence
was detected using Nikon inverted fluorescence micro-
scope with appropriate filters. The remaining cells in the
plates were analyzed by flow cytometry followed by cell
quest software to measure the percent fluorescent posi-
tive cells. Ability to Vpr mutants to interact with Gag and
package into virus particles was assessed by monitoring
the presence of Vpr in virus particles. Briefly, cells were
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cotransfected with pGag and pVpr mutants or vector
plasmid as described before. Forty hours post transfec-
tion, supernatant was collected, spun at 2000 rpm to
remove cell debris and passed through 0.22 pM filter to
remove aggregates and cell debris. Filtered supernatant
was ultracentrifuged to pellet the virus particles and used
in SDS-PAGE followed by immunoblot with anti-Gag
(p24) and anti-Vpr antibody. Similarly, cells were pelleted
and cell lysates were used to detect the presence and
expression of Gag and Vpr in transfected culture.

Results

Construction and characterization of chimeric Vpr for
oligomerization studies using BiFC analysis

The ability of Vpr to oligomerize was demonstrated by
biochemical methods using bacterially produced or
chemically synthesized Vpr protein and/or peptides [15].
A recent study has shown that Vpr forms dimers and oli-
gomers in relevant eukaryotic cells by using fluorescence
spectroscopy and imaging analysis [12]. These observa-
tions have prompted us to evaluate the requirement of
specific domains/residues of Vpr in the oligomerization
of the molecules. It is important to note that, although
oligomerization in live cells has been reported previously,
the assays used for this purpose were mostly qualitative in
nature. We have selected Bimolecular Fluorescence Com-
plementation (BiFC) system based on Venus as a reporter
protein to quantify the interactions between Vpr mono-
mers. Chimeric proteins containing Vpr and N- or C- ter-
minus fragments of the Venus reporter are to result in
reconstitution of a functional Venus protein with fluores-
cence. Since the assay does not distinguish between dim-
ers and oligomers containing more than two Vpr
proteins, we will use the term oligomerization to describe
the contact between at least two Vpr proteins throughout
the manuscript. Briefly, Vpr from NL43 (which will be
referred as Vpr*t) was cloned downstream of its N termi-
nus (1-173 aa) or C terminus (155-238) of Venus fluores-
cent protein as described [34]. The schematic
representation of the constructs is presented in Fig. 1A.
The recombinant plasmids were assessed for expression
of the correctly sized protein products by transient trans-
fection in HEK293T cells followed by immunoblot assay.
The results shown in Fig. 1B indicate that a chimeric
(Venus-Vpr) protein was expressed in cells transfected
with the respective plasmids. The chimeric protein of
expected size was detected by antibody against Vpr. The
steady state expression levels of chimeric proteins were
similar to that of wild type Vpr. Next, we also analyzed
the subcellular localization pattern of the chimeric pro-
teins in comparison to the untagged wild type Vpr by
using Vpr specific antibody. Such an analysis showed that
fusion of N- and C-terminal fragment of Venus reporter
did not alter Vpr localization (Fig. 1C). Together these
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Figure 1 Construction and characterization of Vpr plasmids for oligomerization studies in live cells using BiFC analysis. (A) Schematic rep-
resentation of Vpr¥tfused with Venus-N terminal or Venus-C-terminal fragments. (B) Expression of Venus-C Vpr*tand Venus-N Vpr#twas assessed in
HEK293T cells by transient transfection. HEK293T cells were transfected with Venus-N-Vprtor Venus C-Vpr#texpression plasmids or Vector control
plasmid, and assessed by Western blot. (C) Subcellular localization pattern of Vpr¥tor Venus-Vpr#tfusion proteins was assessed in Hela cells by tran-
sient transfection. Hela cells were transfected with Vpr+tor Venus C - Vpr+tor Venus N - Vprvtexpression plasmids or Vector control plasmid, and as-
sessed by Immunofluorescence for subcellular localization pattern using Vpr-specific antibody. Figure represents one of five independent

experiments (n = 5) with similar results.

results indicate that fusion of chimeric molecules (VC
and VN) did not alter the expression or subcellular distri-
bution of Vpr.

To monitor oligomerization in live cells, HeLa cells
were cotransfected with equal amounts of Venus-C Vpr
and Venus-N Vpr plasmids or each plasmid with back-
bone Venus C or N-terminal fragment containing vector
as a control. Vpr oligomerization was monitored thirty-
six hours posttransfection by flow cytometry (Fig. 2A)
and by fluorescence microscopy (Fig. 2B). Results indi-
cate that cells transfected with both VC-Vpr and VN-Vpr
exhibit a positive signal (26% of BiFC positive cells) that is
detected by both approaches, whereas VC and VN vector,
VC-Vpr or VN-Vpr with a vector control plasmid did not
show any signal. Similar results were observed in Jurkat
cells transfected with Vpr BiFC plasmids (data not

shown). To ascertain the specificity of Vpr-Vpr interac-
tions, we have also carried out a competition experiment
in which vector backbone or untagged Vpr is expressed
along with chimeric VC-Vpr and VN-Vpr. As expected,
the inclusion of untagged Vpr has resulted in a dimin-
ished BiFC signal in a dose dependent manner (Fig. 2C).
Considering the BiFC positive cells in wells transfected
with VC-Vpr and VN-Vpr plasmids against the vector
backbone as 100%, we assessed the BiFC positive cells in a
pool of cells transfected with a combination of three plas-
mids including pVpr. The addition of pVpr at a ratio of 1:1
(2.5:2.5 pg of DNA) to cells cotransfected with VC-Vpr
and VN-Vpr did not reduce BiFC positive cells, whereas
at a ratio of 1:2.5 there is a 40% reduction and it was
reduced to less than 20% BiFC positive cells at 1:10 ratio.
As increasing amount of untagged Vpr plasmid competed
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Figure 2 Visualization of Vpr oligomerization by (A) Flow cytometry or (B) Fluorescent microscopy. (A) Quantitative analysis by flow cytometry
of Venus fragment complementation in Hel a cells transfected with VC-Vpr and VN-Vpr or with control plasmid. Thirty-six hours posttransfection, cells
were harvested and analyzed by flow cytometry to determine the percentage of cells positive for BiFC fluorescence. Results represent the means of
five independent experiments. (B) Subcellular localization of the BiFC complex: HeLa cells grown on glass coverslips were cotransfected with VC and
VN plasmids, VN-Vprwtand VC-Vprvtor VN- Vpr#tor VC- Vprvtwith control plasmid pairs using Lipofectamine. At 36 hours post-transfection, cells were
fixed, stained with DAPI and imaged at 60x magnification. (C) To confirm the specificity of VC and VN based oligomerization, VC-Vpr (0.5 ug) and VN-
Vpr (0.5 ug) plasmids were cotransfected with increasing concentrations of empty vector or Vpr expression plasmid. Thirty-six hours post transfection
cells were fixed and assessed by flow cytometry. BiFC positive cells (%) were calculated in each treatment compared with the control. Figure repre-
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with VC and VN chimeras, percent positive BiFC cells
was reduced. Cell viability was monitored in these cul-
tures during the experimental period and no significant
cell death was observed suggesting that the observed
reduction in BiFC signal is due to the competition of
untagged Vpr and not due to Vpr-induced apoptosis (data
not shown). Together these results indicate that oli-
gomerization of Vpr is specific and this technique would
allow us to study the interaction in live cells more effi-
ciently, especially in HIV-1 target cells.

Structure-based prediction of the Vpr dimer and
oligomeric interfaces

We employed computational approaches to derive
hypotheses regarding putative in vivo dimer interfaces.

Using the available full-length Vpr NMR protein struc-
ture (pdbid:1M8L), we built docking models using Clus-
pro [29,35] and Rosetta softwares [31]. The highly ranked
models included both antiparallel and parallel orienta-
tions. In the majority of models, the interface comprised
mainly residues from helices II and III. Fig. 3A and 3B
show models with parallel and antiparallel orientations,
respectively. Helix I faces away from the dimer interface
in the models shown in Fig. 3. This leaves the possibility
for helix I to mediate higher order oligomerization. Such
a role is feasible because helix I has high coiled coil pro-
pensity (data not shown). The list of the interface residues
in the dimer models together with the secondary struc-
ture is listed in Table 1. A residue is considered in the


http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1M8L

Venkatachari et al. Virology Journal 2010, 7:119
http://www.virologyj.com/content/7/1/119

(A) Parallel dimer model

R80§ Helix Il

N-term 5 5
Helix Il

Helixt v+
RE0 e o—

Helix Il

(C) Hexamer model

(8) Antiparallel dimer model

Helix Il EiS

Helix Ill

il

P
Tdu

‘1;17 Helix Il N-term
o §y
~h:h
R8O

(D) Hexamer madel trimeric unit

@ @ Helix! g o : Helixl
[ , 4 4 ABEI;
Yoo  TR&DY

Helix |

Helix Il

Figure 3 Docked homo-oligomer models of Vpr. (A) Parallel dimer
model; (B) Antiparallel dimer model; (C) Hexamer model top view,
green indicates hydrophobic residues; (D) Hexamer model side view,
only the trimeric unit is shown. Residues that are selected for this study
are indicated with arrows.

Table 1: HIV-1 Vpr residues involved in dimerization based
on dimer models

Parallel dimer model

Secondary structure unit Residues in the interface

Helix 1 30-32,34

Loop 1 35,36

Helix 2 37-42,44-46,48,49

Helix 3 56,59,60,63,64,67,68,70,71
C-terminus 84,85,91

Antiparallel dimer model

Secondary structure unit Residues in the interface

N-terminus 1,14,15

Helix1 18-19,22,34

Loop 1 35,36

Helix 2 38,41,42,44-46,48-50
Loop2 53

Helix 3 54-59,62-64,66,67,69-71,74
C-terminus 80,82-86,90-94

Aresidue is considered in the interface, if it has at least one atom
within 5.0 A distance to any atom in the other chain.
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interface, if it has at least one atom within 5.0 A distance
to any atom. With the exception of R80 many of the
selected residues are within the dimer interface. Next, to
verify if higher order oligomerization states are compati-
ble with the Vpr structure, we formed higher order mod-
els. A particularly plausible hexamer model is shown in
Fig. 3C and Fig. 3D. This model was constructed from the
monomer NMR structure by excluding the flexible N and
C-termini. The predicted conformation included both
parallel and antiparallel dimeric units. Hydrophobic resi-
dues were buried in the interfaces. In addition to helices
II and III, helix I was part of the hexamer interfaces.

Role of predicted interface residues in Vpr oligomerization
Given that all three helices are predicted to be involved in
oligomerization, we selected from the putative interface
candidate residues for further biological evaluation. The
residues targeted for mutational analysis are shown in the
context of the NL43 sequence along with the helical
domains in Fig. 4A. We have also included, A44 mutant as
a positive control as this is already known to be defective
in dimer formation [12] in addition to R80, which resides
outside of the helical domains. Vpr mutant molecules
were cloned in venus-C and venus-N construct and veri-
fied for expression in HEK293T cells by transfection fol-
lowed by immunoblot analysis as shown for VN-Vpr
constructs in Fig. 4B. Similar results were observed for
VC-Vpr constructs (data not shown). Cell lysates were
normalized for transfection efficiency and loaded equally.
Results indicate that both VN and VC Vpr mutant chime-
ric molecules express the appropriate size protein. The
expression level of all Vpr mutant molecules is compara-
ble to wild type, with the exception of L68E (slightly lower
with similar amount of DNA used); however level of
VprL68E expression was equalized by increasing the
amount of VprL68E plasmid used for transfection.

Next, we assessed the ability of Vpr mutants to form
oligomers by BiFC analysis. The expression of Vpr mole-
cules was also assessed from the same batch of cells by
indirect immunofluorescence using HA antibody (to
detect HA tagged Vpr) and compared with BiFC by
microscopy (Fig. 4C). Results indicate that Vpr¥t, E48A
and R80A exhibited 35, 22 and 39% BiFC positive cells
respectively, whereas mutants A30L, A44, L68E and
H71R did not show BiFC positive cells, suggesting that
these mutants are defective in oligomerization. The dif-
ferences in percent BiFC in Vpr#t, E48A and R80A is due
to difference in transfection efficiency and did not show
statistical significance in multiple experiments. Impor-
tantly, staining for Vpr (panel Vpr in Fig. 4C) further con-
firmed the expression of Vpr protein suggesting that lack
of dimerization is not due to lack of Vpr expression. We
also assessed whether subcellular distribution of Vpr
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mutant molecules has any role in oligomerization. Both
Vpr*t, and E48A showed uniform nuclear localization.
The Vpr mutant R80A exhibited nuclear membrane dis-
tribution of venus fluorescence. On the other hand, BiFC
negative mutants, A30L, A44, L68E and H71R showed
both nuclear and cytoplasmic distribution suggesting that
subcellular distribution of Vpr is different in oligomeriza-
tion defective mutants in comparison to Vpr¥t. Similar
results were reported by other groups indicating that
nuclear localization of Vpr is not absolutely necessary for
Vpr mediated functions such as cell cycle arrest and
virion incorporation [26,36].

Relevance of oligomerization in Vpr-Gag interaction and
virion incorporation of Vpr

It is known that Vpr interacts with HIV-1 Gag specifically
through the p6 domain and packages into the virus parti-
cles in significant quantities [15,37-40]. Therefore, we

were interested in assessing whether Vpr-Gag interaction
is detectable in BiFC based live cell assay using Venus-
Gag and Venus-Vpr plasmids. Combination of venus-C
and venus-N plasmids expressing either Gag or Vpr was
cotransfected and evaluated for BiFC signal by flow
cytometry and fluorescence microscopy (Fig. 5A). Flow
cytometry analysis revealed specific oligomerization of
Gag (30%) with distinct Gag distribution at the cell mem-
brane (marked in Fig. 5A panel). Combination of venus-
N-Gag and venus-C-Vpr*t or venus-C-Gag and venus-N-
Vpr*tresulted in 34% and 29% fluorescent positive cells,
respectively. There was no signal detected with appropri-
ate control plasmid transfection suggesting that Vpr-Gag
interaction is specific as reported previously [26,40]. Sub-
cellular distribution of Gag-Gag interaction and Gag-Vpr
interaction resulted in cytosolic and cytoplasmic mem-
brane localization (Fig. 5A; panel a-c), whereas Vpr-Vpr
interaction resulted in nuclear localization (Fig. 5A; panel



Venkatachari et al. Virology Journal 2010, 7:119
http://www.virologyj.com/content/7/1/119

(A Figure 5
VN-Gag+VC-Gag VC-Gag+VN-Vpr+ VN-Gag+VC-Vpr+ VN-Vpret+VC-Vpr«

a b c d
34% 29% 27%

(B)

VprR80A
Vector

Vprwt
VprA3oL
Vprada
VprE4sE
VprL68E

| | vprH7IR

_-—-‘ +—p24 Gag
— S <«— Vpr

Hi

Figure 5 Role of Vpr oligomerization in incorporation of Vpr into
virus particles. (A) Visualization of Vpr#tand Gag interaction in Hel.a
cells by BiFC. HeLa cells were transfected with VN-Vpr+tand VC-Gag ex-
pression plasmids. Thirty-six hours post transfection, cells were fixed,
stained with DAPI and analyzed for presence and pattern of BiFC signal
at 60x magnification. (B) Incorporation of Vpr mutant molecules into
virus particles. Vpr plasmids were cotransfected with pNL43AVpr pro-
viral plasmid in HEK293T cells. Forty-eight hours post-transfection, su-
pernatant was collected, filtered, lysed and subjected to SDS-PAGE
electrophoresis and evaluated for the presence viral proteins p24-Gag
and Vpr using p24-specific and Vpr specific antibodies by western blot.
Figure represents one of five independent experiments (n = 5) with
similar results.

d). Together, the fluorescence microscopic analyses reveal
that Vpr interacts with Gag specifically at the cytoplasmic
membrane as well as in the cytoplasm and this interac-
tion results in differential localization of Vpr correspond-
ing to virion incorporation and virus assembly.

Next, we assessed the ability of Vpr mutants to incorpo-
rate into virus particles. HEK293T cells were cotrans-
fected with pNL43Avpr proviral plasmid and Vpr
expression plasmids or vector control. Vpr amount in cell
lysate was quantitated by loading protein normalized for
transfection efficiency and amount of Vpr in virus parti-
cles was quantitated by loading viral lysates normalized
using Gag-p24 antigen, respectively (Fig. 5B). Presence of
Vpr in virus particles was noted only in Vpr*t, E48A and
R80A, whereas, A30L, A44, L68E and H71R did not show
virion associated Vpr. However, all mutants showed equal
amount of p24-Gag in the same sample. These results
suggest that mutants A30L, A44, L68E and H71R are
defective in virion incorporation and they did not alter/
interfere with the virus production in the cells contrans-
fected with NL43Avpr proviral DNA and Vpr encoding
plasmid. To further confirm that the lack of Vpr in virus
particles is not due to lack of Vpr expression in these
cells, cell lysates from the same samples were assessed for
Vpr and p24 levels (data not shown). The results indicate
that comparable levels of Vpr and p24 were observed in

Page 8 of 11

all cell lysates (Fig. 4B). Together theses studies indicate
that Vpr oligomerization is an essential feature for virion
incorporation.

To further confirm that Vpr mutants that are defective
in virion incorporation lack the ability to interact with
Gag, Vpr mutants were cotransfected with VN-Gag or
VC-Gag with appropriate controls and assessed for BiFC
(Table 2). Results indicate that VC/VN chimeric Vpr*t,
E48A and R80A plasmids in combination with VC/VN-
Gag showed measurable BiFC positive cells, whereas
A30L, A44, L68E and H71R are negative for BiFC com-
pared to positive control. Collectively, these studies indi-
cate that Vpr mutants that are defective in virion
incorporation are defective in Gag interaction and virion
incorporation.

Discussion

HIV-1 and 2 are members of lentivirus family of retrovi-
ruses and are grouped as complex retroviruses. The
unique feature of this group in comparison to simple ret-
roviruses is that the viral genome codes for several pro-
teins in addition to the core structural proteins. In this
regard, HIV-1 is known to code for six auxiliary proteins
(Vif, Vpr, Tat, Rev, Vpu and Nef) besides the structural
proteins. Previous studies have demonstrated that auxil-
iary proteins play an essential role in HIV-1 replication
and pathogenesis [41]. Our laboratory has been inter-

Table 2: Percent BiFC positive cells in wells transfected
with a combination of Vpr and Gag expression plasmids.

Vpr plasmids VC-Gag VN-Gag
VC-Vprwt 0 31
VN-Vprwt 27 0
VC-VprA30L 0 0
VN-VprA30L 0 0
VC-VprA44 0 0
VN-VprA44 0 0
VC-VprE48A 0 29
VN-VprE48E 28 0
VC-VprL68E 0 0
VN-VprL68E 0 0
VC-VprH71R 0 0
VN-VprH71R 0 0
VC-VprR80A 0 33
VN-VprR80A 27 0

293T cells were cotransfected with combinations of VC and VN-
chimeric Vpr and Gag expression plasmids as described in
methods. Thirty-six hours post transfection cells were fixed and
assessed by flow cytometry. BiFC positive (%) cells are presented
in the respective combination. Results represent one of three
independent experiments with similar results.
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ested for several years in evaluating the contribution of
auxiliary proteins including Vpr. In this study, we have
analyzed the requirement of sequences in Vpr essential
for oligomerization feature of Vpr and its relevance to the
functions of Vpr. Specifically, Vpr shares this feature with
other auxiliary proteins such as Vif, Rev, Vpu, and Nef.

HIV-1 Vpr is a small oligomeric protein that plays an
important role in HIV pathogenesis [5,17,19,23,42]. The
underlying reasons for the selection of Vpr for the present
studies are the following: (i) Vpr is a virion associated
protein; (ii) Vpr plays a critical role for the replication of
virus in macrophages and positively regulates viral repli-
cation in T cells; (iii) Vpr is a transcriptional activator of
HIV-1 and heterologous cellular genes; (iv) Vpr inhibits
proliferation of cells at G2/M phase; (v) Vpr induces
apoptosis in diverse cell types including T cells and neu-
rons; (vi) Vpr exhibits immune suppressive effects. Fur-
ther, studies from non human primates and analysis of
viral genes in long term non progressors suggest a corre-
lation between defective Vpr and delayed progression of
the disease [5,43,44]. More importantly, several Vpr-
mediated functions are known to be induced by both cell-
associated and virion-associated Vpr [17,18,45]. Together
these studies point out the biological significance of
virion associated factors and its role in early events asso-
ciated with virus infection. Therefore, understanding the
role of oligomerization in Vpr functions and disease pro-
gression may provide useful information for the develop-
ment of therapeutics against HIV-1 targeting Vpr.

The oligomerization feature of Vpr was evaluated by
using a complementation system based on Venus protein
as a reporter. A strategy involving the generation of chi-
meric Venus-Vpr protein has allowed us to monitor oli-
gomerization in live cells. This system has the sensitivity
to detect Vpr-Vpr and Vpr-Gag interactions. Studies on
the oligomerization of Vpr, analyzed by site-specific
mutagenesis, identified some residues located in specific
domains of Vpr. However, there is no information avail-
able regarding the dimer interface structure of Vpr. To
address this, we have utilized the available NMR struc-
ture and modeling approaches to identify the residues
that form putative dimer and oligomer interfaces of Vpr.
Deletion of residue at position 44, which is predomi-
nantly glutamine (Q), is known to be oligomerization
defective and was used as a control in these experiments.
We reasoned that moderate replacements, in particular
those mostly affecting size, should show significant bio-
logical effects if these residues form part of the interfaces.
Thus, for A30 and L68 we chose L and E replacements,
respectively, conserving hydrophobicity but changing the
size of the position. On the other hand, at position H71,
we chose R, maintaining the positive charge. Mutant Vpr
molecules were generated containing alterations in the
selected residues. The results regarding the expression
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and steady state level of Vpr indicated that mutants lack-
ing the ability to oligomerize exhibit a pattern similar to
that of wild type Vpr. This observation suggests that
monomeric Vpr molecules are stable in cells, which is in
agreement with an earlier report [36].

To interpret the mutagenesis data in structural terms,
we created structural models of the Vpr dimer and oli-
gomers through molecular docking based on the available
full length monomer structure [20]. Our models are
shown in Figure 3, highlighting the positions of the resi-
dues that resulted in oligomerization defective properties
of Vpr in vivo. The docked models revealed propensities
for both parallel and antiparallel orientations of the
monomers within a dimer indicating that both of the con-
formations are plausible. Regardless of orientation, heli-
ces II and III constitute the dimer interface in the
majority of the models. In the parallel orientation, resi-
dues 30, 44, 68, 71, all of which fail to oligomerize when
mutated, even with the conservative substitutions cho-
sen, were part of the interface; while in the antiparallel
orientation residues 44, 68 and 71 contributed to the
binding energy in the interface. Further supporting our
predicted interfaces, recent studies of Vpr mutants I60A
and I67A indicated that these residues play a major role
in trafficking the Vpr to the nuclear rim [12]. Both of
these residues are part of the interface in the predicted
parallel conformation, whereas 160 is part of the antipar-
allel model. In agreement with the experimental results
presented here suggest that both of these two dimer con-
formations are likely to occur in vivo. The parallel orien-
tation fits the experimental data better, but further
studies will be needed to fully differentiate between the
two models. Furthermore, assays are needed that can
clearly distinguish dimers from higher order oligomers.
Based on the combined modeling and experimental
results, we propose that dimerization primarily involves
helices II and III, while oligomerization includes helix I
also. The fact that the Vpr mutation A30L reported here
and the recently studied nuclear rim localization defec-
tive mutant L23F [12] are located in helix I supports the
proposed role of helix I in oligomerization. We predict
that because helix I in the dimer models faces away from
the dimer interface, it may play a pivotal role in mediating
higher order Vpr-Vpr interactions. We therefore built
models for higher order multimeric forms, and a hexamer
model (Fig. 3C and Fig. 3D) exhibited an interface where
all the three helices participated in interaction interfaces.
In this hexamer model, both parallel and antiparallel
dimeric units were present and the hydrophobic residues
faced to interior of the helices (Fig. 3D).

HIV-1 Vpr is one of the non-structural proteins that is
packaged in significant quantities in virus particles.
Virion-associated Vpr is present in the infected cells prior
to de novo synthesis and is known to cause the host cellu-
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lar dysfunctions during early infection [17,19,42]. Studies
have indicated that the p6 domain of Gag is critical for
the incorporation of Vpr into virus particles [15,39,40,46].
However, it is not clear whether Vpr oligomerization is a
prerequisite for virion incorporation. As expected, chi-
meric Venus containing wild type Vpr and chimeric
Venus containing Gag resulted in the reconstitution of
Venus with fluorescence suggesting an interaction
between these two proteins. On the other hand, chimeric
Venus containing mutant Vpr failed to interact with Gag.
Vpr mutants that showed oligomerization negative phe-
notype also failed to incorporate into virus particles. Sev-
eral studies have reported that virus particle contains
between 14-275 molecules of Vpr in comparison to
approximately 2500-2750 molecules of Gag protein
depending on the system and methods used [38,47]. This
suggests that low amount of Vpr to Gag may be due to the
interaction restricted to the specific configuration of Gag.
Several studies evaluated Vpr-Gag interaction and
reported that helical domain I (residues E25 and A30),
P35 and helical domain III (isoleucine-leucine residues)
in Vpr are required for interaction with Gag, thus virion
incorporation [26,39,48]. Our results on Vpr-Gag interac-
tion using BiFC (Table 2) are in agreement with these
studies and further supports the utility of BiFC assay for
evaluating the interactions of Vpr with interacting part-
ner proteins. Oligomerization defective mutants, A30L,
A44, L68E and H71R lack the ability to incorporate into
the virus particles, suggesting that Vpr oligomerization
might be directly linked to virion associated Vpr func-
tions, pathogenesis and disease progression. A very
recent publication further confirms our findings that Vpr
oligomerization is required for interaction with Gag and
oligomerization deficient mutants of Gag interacted with
Vpr [49].

An understanding of HIV-1 Vpr functions and its prop-
erties, in our view, is likely to shed light on the mecha-
nisms involved in Vpr incorporation into the virus
particle and how oligomerization feature influences
infection of non dividing target cells. Although Vpr is not
essential for virus replication in in vitro studies using
established cell lines, it is well established that virion-
associated Vpr play a major role in macrophage infection
by aiding the transport of PIC into the nucleus [50,51].
More importantly, virion-associated Vpr is known to
mediate several host cellular events and immune evasive
functions that are very similar to de novo synthesized Vpr
[18,52,53]. This further bolsters the significance of virion-
associated proteins present both in infectious and nonin-
fectious particles and their role in HIV-1 pathogenesis.
These studies further support the idea of developing
potential therapeutic agents including small molecules
against Vpr-Vpr interaction, Vpr-Gag interaction, virion
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incorporation and virion associated Vpr induced host cell
dysregulation to combat HIV-1 infection.
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