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Abstract
Background: Hepatitis C virus (HCV) induces membrane rearrangements during replication. All
HCV proteins are associated to membranes, pointing out the importance of membranes for HCV.
Non structural protein 4B (NS4B) has been reported to induce cellular membrane alterations like
the membranous web. Four transmembrane segments in the middle of the protein anchor NS4B
to membranes. An amphipatic helix at the amino-terminus attaches to membranes as well. The
carboxy-terminal domain (CTD) of NS4B is highly conserved in Hepaciviruses, though its function
remains unknown.

Results: A cytosolic localization is predicted for the NS4B-CTD. However, using membrane
floatation assays and immunofluorescence, we now show targeting of the NS4B-CTD to
membranes. Furthermore, a profile-profile search, with an HCV NS4B-CTD multiple sequence
alignment, indicates sequence similarity to the membrane binding domain of prokaryotic D-lactate
dehydrogenase (d-LDH). The crystal structure of E. coli d-LDH suggests that the region similar to
NS4B-CTD is located in the membrane binding domain (MBD) of d-LDH, implying analogy in
membrane association. Targeting of d-LDH to membranes occurs via electrostatic interactions of
positive residues on the outside of the protein with negative head groups of lipids. To verify that
anchorage of d-LDH MBD and NS4B-CTD is analogous, NS4B-CTD mutants were designed to
disrupt these electrostatic interactions. Membrane association was confirmed by swopping the
membrane contacting helix of d-LDH with the corresponding domain of the 4B-CTD.
Furthermore, the functionality of these residues was tested in the HCV replicon system.

Conclusion: Together these data show that NS4B-CTD is associated to membranes, similar to
the prokaryotic d-LDH MBD, and is important for replication.
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Background
Hepatitis C virus (HCV) preferentially infects hepatocytes
[1]. Although this does not have a direct cytopathic effect,
infection often becomes persistent, slowly progressing
into chronic liver diseases like cirrhosis and hepatocellu-
lar carcinoma [2,3]. Phylogeny of HCV places this positive
sensed RNA virus, within the genus Hepaciviruses of the
family Flaviviridae [4]. The single stranded RNA genome
contains one open reading frame flanked by two non-
translational regions (NTRs) at the 5' and 3'-end. An inter-
nal ribosomal entry site in the 5'-NTR facilitates the trans-
lation of the polyprotein [5]. Cellular and viral-encoded
proteases process the polyprotein into three structural
proteins (core and two glycoproteins, E1 and E2), a
hydrophobic peptide p7 and six non-structural (NS) pro-
teins [6,7].

During infection the conformation of cellular host mem-
branes changes in a number of ways. One of these mem-
brane alterations is the membranous web (MW),
composed of small vesicles embedded in a membrane
matrix [8]. Ultrastructural analysis of HCV replicon cells
in combination with labeling of viral RNA revealed that
this membranous web is the site of RNA synthesis [8].

The non-structural (NS) proteins NS3 to NS5B are
required for viral replication [9]. They localize to the
cytosolic leaflet of membranes derived from the endoplas-
mic reticulum (ER) [10]. NS3 possesses RNA helicase as
well as protease activity. Membrane anchoring of NS3 is
mediated through an amphipatic helix at the N-terminus
of NS3 and a transmembrane segment in NS4A, which is
also a co-factor for NS3 protease [11,12]. New HCV RNA
strands are synthesised by NS5B, the RNA-dependent
RNA polymerase. NS5B is targeted post-translationally to
membranes via a carboxy terminal hydrophobic domain
[13,14]. NS5A, a peripheral membrane binding protein,
associates with lipids via an amphipatic helix at its amino-
terminus [15]. Importance for both replication and virus
production has been suggested for NS5A [16,17]. A cen-
tral role for the integral membrane protein, NS4B, in the
formation of the membranous web was suggested when
Egger et al. showed that very similar structures could be
induced by the NS4B protein in the absence of any other
HCV proteins [18]. These NS4B induced structures were
defined as swollen, partially vesiculated membranes and
clustered aggregated membranes [19].

NS4B is a hydrophobic protein with a molecular weight of
approximately 27 kDa and has a modular domain organ-
ization with the amino- (N) and carboxy- (C) terminal
ends being cytoplasmic and a central region which is
inserted in the ER membrane. A topology study of NS4B
indicated that the central domain has four transmem-
brane segments [20,21]. The N-terminal part, approxi-
mately 70 to 90 amino acids long, has several reported

functional properties. The extreme N-terminal segment of
NS4B revealed the presence of a putative amphipatic helix
(AH, aa 6 – 29), which mediates membrane association
through its hydrophobic side [22]. Disruption of this
helix alters its ability to rearrange intracellular membranes
and the localization of HCV replication proteins [21,22].
The region next to this amphipatic helix is predicted to
form a large amphipatic helix (aa 22 – 49), with the char-
acteristics of a basic leucine zipper motif (bZIP) [23]. The
first 72 amino acids from the N-terminus of NS4B have
been suggested to be involved in multimerisation [24],
which may involve intramolecular leucine zipper interac-
tions. A post-translational relocation of the N-terminus to
the ER lumen was proposed for a fraction of the NS4B
pool, giving the protein a dual transmembrane topology
with either four or an extra fifth transmembrane domain
(TMx) [20,21]. The C-terminal domain (CTD) of NS4B is
oriented towards the cytosol and seems well conserved
throughout hepaciviruses. Despite this sequence conser-
vation not much is known about the CTD, though lately
several studies describe possible characteristics of the
domain [24-27]. A genetic interaction between NS3 with
the extreme C-terminus of NS4B has been postulated [27].
Besides protein-protein interactions [24,27], a protein-
RNA interaction has also been suggested [25]. Further-
more the CTD of NS4B is involved in RNA synthesis and
virus production [26].

The most widely suggested function for NS4B is the crea-
tion of a platform in the cell that concentrates the virus
template, replication and host cell proteins, thereby
increasing the efficiency of replication [18,28]. Alterna-
tively, distortion of cellular membranes can reduce the
transport of cell surface proteins in infected cells in order
to escape from the host immune response [19]. Other
functions attributed to NS4B are inhibition of host as well
as viral protein translation [29,30] and modulation of
NS5a hyper-phosphorylation [31]. Clearly, NS4B is
involved in a wide range of activities, which seem to point
to a role in modulating the host cell environment either
for evasion of the host response or optimizing the setting
for viral replication.

In this study we investigate the most conserved, though
least characterized, domain of NS4B, the CTD. Expression
of this domain in Huh7 cells, a human hepatoma cell line,
revealed membrane targeting of the NS4B-CTD, in con-
trast to its predicted cytosolic localization. Based on simi-
larity with D-lactate dehydrogenase (d-LDH) membrane
binding domain and mutational studies, we suggest that
the NS4B-CTD is a membrane binding domain. The
importance of this membrane targeting during replication
was analyzed in replicon studies. Taken together our
results show that in addition to the N-terminus and the
transmembrane domains, NS4B can associate with intrac-
ellular membranes via its CTD. Furthermore, mutational
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studies suggest that, for membrane targeting, positive res-
idues in the NS4B-CTD interact with the negatively
charged head groups of lipids.

Results
NS4B carboxy terminal domain localizes to internal 
membranes
A well-conserved part of the HCV NS4B protein is the car-
boxyl terminal domain (NS4B-CTD), which is also con-
served within the hepacivirus genus [23]. Along with the
expected cytosolic localization it proposes a separate func-
tion of the NS4B-CTD. To study the localization of NS4B-
CTD various constructs were made. To each construct a
Myc-epitope-tag was fused at the C-terminus as a detec-
tion epitope. These constructs were transfected into Huh7
human hepatoma cells and analyzed using immunofluo-
rescence. Localization of the constructs was first compared
to the endoplasmatic reticulum (ER), using Protein Disul-
phide Isomerase (PDI) as a marker. In Figure 1a, top left
panel, Huh7 cells expressing full length NS4B (NS4B-FL,
aa 1–261) are shown. NS4B-FL has a perinuclear and retic-
ular staining, typical for ER. Additionally, the pattern of
NS4B-FL largely overlaps with PDI. This ER-like staining
confirms the previously described localization of native
FL NS4B [20,32]. To our surprise, expression of the NS4B-
CTD alone (aa 188–261) does not show a cytosolic stain-
ing, but displays small punctate or dot like structures
throughout the cells (Fig. 1a, CTD left panel). In the over-
lay of NS4B-CTD and PDI some co-localization is seen
between the two (Fig. 1a, CTD right panel). Together with
the small punctate staining, this suggests that the NS4B-
CTD might be associated to membranes.

Since the NS4B-CTD shows a dot like pattern, it might
have an effect on the attachment to membranes or even
localization of NS4B-FL. Therefore, an NS4B lacking the
CTD (NS4B-deltaCTD, aa 1–192) was constructed and
examined in immunofluorescence. As shown in Figure 1a,
NS4B-deltaCTD has a perinuclear and reticular staining,
like NS4B-FL and PDI, indicating an ER-like localization
(Fig. 1a). Also co-transfections of NS4B-FL and NS4B-del-
taCTD show similar localization (data not shown).
Together this implies that the absence of CTD does not
seem to alter the localization of NS4B.

Two potential lipid modification sites for palmitoylation
on cysteines, suggested by Yu and colleagues [24], might
render the NS4B-CTD to membranes. We therefore inves-
tigated this possibility and mutated the two cysteines
(cysteines 256 and 260) of the NS4B-CTD into serines
(NS4B-CTD sub-Cys) (Fig. 1a) and expressed this mutant
in Huh7 cells. Localization of the NS4B-CTD sub-Cys
mutant was very similar to NS4B-CTD, exhibiting small
punctate structures in the cells (Fig. 1a). It shows that the
dot-like membrane localization of NS4B-CTD is caused

by characteristics in the domain other than the cysteines
at positions 256 and 260.

Membrane association of the carboxy terminal domain of 
NS4B
Membrane association of proteins can be investigated in a
membrane floatation assay. In such an assay, a continu-

Expression of different NS4B proteins in Huh7 cellsFigure 1
Expression of different NS4B proteins in Huh7 cells. 
Huh7 cells were transfected with NS4B full-length (FL, aa 1–
261), deltaCTD (aa 1–192), CTD (aa 188–261) or CTD sub-
stitution-Cysteines (CTD sub-Cys) and 24 h later processed 
for indirect immunofluorescence. Cells were double labeled 
with antibodies reacting against Myc-epitope-tag at the C-
terminal end of each protein (in red) and A. protein disul-
phide isomerase (PDI) or B. Cytochrome C oxidase subunit 
IV (COX-IV) (in green), in first and second panels respec-
tively. Third panels show merged images.
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ous-density gradient is loaded on top of a cell extract and
subjected to centrifugation. Membranes and associated
proteins float into the gradient, while cytosolic proteins
stay in the loaded bottom fraction. To examine the sug-
gested membrane association characteristics of the NS4B-
CTD a membrane floatation assay was performed. Figure
2 shows the results of that assay, in which a cell lysate of
Huh7 cells transfected with NS4B-CTD was used. Frac-
tions were collected from the top (10%) to the bottom
(80%) of the gradient and the odd fractions were analyzed
by western blotting. As a control for cytosolic proteins,
glyceraldehyde 3-phosphate dehydrogenase (GAPDH)
was used. As expected, GAPDH was retained in the bot-
tom fractions 21 and 23 of the density gradient, where the
cell extract was loaded (Fig. 2). Calnexin, Transferrin
receptor (TfR) and Cytochrome C oxidase subunit IV
(COX-IV) are transmembrane proteins and float into the
gradient, they are mainly observed in fractions 9 and 11
(Fig. 2). Since calnexin, TfR and COX-IV reside on differ-
ent membranes in the cell (ER, the endocytic pathway and
mitochondria), their distribution differs slightly (Fig. 2).
The NS4B-CTD is detected in fractions 7 to 13 and 21 and
23 with its highest signal in fraction 11 (Fig. 2). In conclu-
sion, similar to membrane proteins the NS4B-CTD floats
into the gradient, implying membrane association of the
NS4B-CTD. Together, the punctate structures in immun-

ofluorescence and the floatation into the membrane float-
ation gradient, suggest association of the CTD of NS4B to
membranes.

Cellular localization of the NS4B carboxy terminal domain
Since the CTD of NS4B only partially overlaps with the
ER-marker, PDI (Fig. 1a), we were interested in knowing
on which other membranes the NS4B-CTD resides. There-
fore, co-localization studies with different organelle mark-
ers in Huh7 cells transfected with NS4B-CTD were
performed. From the exocytic pathway we examined the
Golgi (Giantin) and the ER-Golgi intermediate compart-
ment (ERGIC) and found no substantial co-localization
(data not shown). Similar results were obtained from co-
localization studies with markers from the endocytic
pathway, such as Rab5 from early endosomes, mannose-
6-phosphate receptor and LAMP1, proteins that resides in
late endosomes and lysosomes (data not shown).
Recently, lipid droplets were demonstrated to play an
important role in the HCV lifecycle [33]. However, no co-
localization of lipid droplets and the NS4B-CTD was
observed (data not shown). HCV proteins, Core, NS3 and
NS4A are suggested to localize to or close to mitochondria
[34,35]. For that reason, co-localization of mitochondria
and NS4B-CTD was investigated. We could observe con-
siderable similarity in patterns between COX-IV, a mito-
chondrial protein marker and the NS4B-CTD (Fig. 1b).
However, the overlap is not complete. Even though we
did not specifically preserve the plasma membrane during
immunofluorescence, we could occasionally see a fraction
of NS4B-CTD at the plasma membrane (Fig. 1b. Inset).
Taken together the CTD of NS4B seems to be mainly tar-
geted to mitochondria, ER membranes and the plasma
membrane.

Profile searches with an HCV NS4B carboxy terminal 
domain alignment suggest similarity to Lact-deh-memb
The importance of the NS4B-CTD might be reflected by
the sequence conservation within hepaciviruses. Its
sequence conservation may also provide a clue to its func-
tion. Identification of potentially remote protein homo-
logues can help to predict protein properties, like folding,
structure and most importantly function. Similarity
between distantly related proteins can be effectively estab-
lished using profile based searches of databases of pro-
teins families. In order to elucidate a possible function of
the CTD of NS4B, we generated a multiple sequence align-
ment (profile) of the NS4B-CTD including all genotypes
of HCV, Hepatitis GB virus A, B and C (Additional file 1),
which we manually refined. Programs for profile-profile
comparisons have been developed and are available as
web-based tools. We used three different tools for profile-
profile comparison with our HCV NS4B-CTD query pro-
file, namely PRC [36], HHpred [37] and COMPASS [38]
because each is sensitive to a different set of algorithms

Membrane association of NS4B carboxy terminal domainFigure 2
Membrane association of NS4B carboxy terminal 
domain. Huh7 cells transfected with NS4B-CTD-Myc, 
NS4B-CTD tripleE-Myc or NS4B-CTD Helix-swop-Myc 
were subjected to sucrose density gradient centrifugation. 
Cell lysates were loaded under a sucrose gradient from 10–
80% w/v and part of the lysate was used as a loading control 
(L). Fractions were taken from top (fraction 1) to bottom 
(fraction 23) and separated by SDS-PAGE. Followed by 
immunoblot analysis for Calnexin, Transferrin Receptor 
(TfR), Cytochrome C oxidase subunit IV (COX-IV) and Glyc-
eraldehyde 3-phosphate dehydrogenase (GAPDH). NS4B-
CTD and NS4B-CTD tripleE were assayed using an antibody 
against Myc-epitope. M indicates where molecular weight 
marker was loaded.
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and the combination of the three tools reinforces inde-
pendently detected relationships. This allows us to con-
struct a consensus result with hits found by all tools.
Using similar search parameters (see Materials and Meth-
ods) twelve, eight and five hits were found by PRC,
HHpred and COMPASS respectively. Interestingly, only
one protein family Lact-deh-memb (PF09330) was found
by all three methods. This was the highest scoring profile
for the three methods, next to the NS4B profile (E-values
0.057, 0.086 and 0.35 for the respective searches). Accord-
ing to HHpred the probability (which also includes the
contribution from the secondary structure score) that lact-
deh-memb is significant similar to NS4-CTD is 44.8%.
Members of this Lact-deh-memb family are predomi-
nantly found in prokaryotic D-lactate dehydrogenase (d-
LDH), which is a peripheral membrane respiratory
enzyme located on the cytosolic site of the inner mem-
brane [39]. Comparison of the sequence similarity
between HCV NS4B-CTD and d-LDH from E. coli, of
which the crystal structure has been resolved [39],
revealed that the common region lies in the membrane
binding domain (MBD) of d-LDH (Fig. 3a and Additional
file 1) [40]. Thus besides apparent sequence similarity,
both domains seem to perform similar functions, that is,
they allow for membrane association. The MBD of d-LDH
was suggested to bind nonspecifically to the membrane
through (the positively charged) basic residues (Lys, Arg),
interacting with the negatively charged phospholipids of
the membrane, rather than penetrating the lipid bilayer
[39-41]. Part of the d-LDH MBD corresponding to the
CTD of NS4B is disordered in the crystal structure and is
thought to form a defined structure upon binding to the
membrane [39]. The central alpha helix of the d-LDH
MBD (Fig. 3b) corresponds to the extreme carboxy-termi-
nal end of NS4B-CTD. The amino-acids on the membrane
interface of this alpha helix and the corresponding resi-
dues of NS4B-CTD are indicated in Figure 3a.

Membrane targeting of NS4B carboxy terminal domain 
and d-LDH is comparable
Profile-profile comparison E-values in the range of 0.1–
0.001 can indicate a true relationship, but require addi-
tional evidence to conclude that there is a functional par-
allel between NS4B-CTD and d-LDH-MBD in membrane
binding [42]. Mutational studies could reveal functional
similarity and were accordingly performed. D-LDH is a
general membrane binding protein in E. coli located on
the cytosolic side of the inner membrane. The position of
such a protein in eukaryotic cells is unknown. Therefore,
we first investigated localization of d-LDH MBD in Huh7
cells. As shown in Figure 4a d-LDH MBD (aa 319 to 390)
mainly overlaps with COX-IV illustrating that when the d-
LDH MBD is expressed separate from the enzyme part of
the d-LDH protein, functionality of membrane binding is

maintained. Moreover, co-transfection of NS4B-CTD and
d-LDH MBD showed nearly complete overlap of the two
patterns (Fig. 4b). Furthermore these immunofluores-
cence assays indicate that d-LDH MBD, a general mem-
brane binding domain, has a preference for
mitochondrial membranes in eukaryotic cells, which is
comparable to the localization of NS4B-CTD (Fig. 4a),
implying analogous membrane targeting of the two
domains.

To test the hypothesis that the CTD of NS4B associates
with the membranes in a way similar to the d-LDH MBD,
we introduced mutations designed to disrupt the positive
residues postulated to interact with the negative head
groups of lipids [39,40] (Fig. 3a). The side chains of the d-
LDH MBD pointing away from the protein, facing the
membrane surface are indicated in Figure 3b. Three posi-
tively charged amino acids (Lys 247, Arg 248 and His 250)
in NS4B corresponding to the structured alpha-helix in d-
LDH were simultaneously replaced with a negatively
charged glutamic acid (K247E/R248E/H250E; NS4B-CTD
tripleE), which should not be able to bind to phospholi-
pid heads. The NS4B-CTD tripleE mutant was expressed in
Huh7 cells and membrane association was investigated
using immunofluorescence and a membrane floatation
assay. Mutation of all three positively charged residues
results in a dramatic change of localization of the NS4B-
CTD, from punctate structures in the perinuclear region to
a diffuse distribution throughout the cell, possibly
cytosolic (Fig. 4a, compare NS4B-CTD to NS4B-CTD tri-
pleE). Loss of membrane association was also shown in a
continuous-density gradient, in which NS4B-CTD tripleE
was detected in the same fractions as the cytosolic marker
GAPDH (Fig. 2).

A functional parallel can also be examined by swopping
part of the membrane binding domains of two proteins. A
mutant was constructed, in which we exchanged the puta-
tive membrane contacting helix of NS4B-CTD for the cor-
responding membrane contacting helix of the d-LDH
MBD (NS4B-CTD helix-swop) (Fig. 4a). Huh7 cells
expressing NS4B-CTD helix-swop display punctate struc-
tures in immunofluorescence, though the staining has a
slightly more diffuse localization compared to NS4B-CTD
(Fig. 4a). Similarity in patterns with COX-IV also indi-
cated that the NS4B-CTD helix-swop is targeted to mem-
branes while the NS4B-CTD tripleE mutant has lost
membrane binding. Furthermore a membrane floatation
assay showed that NS4B-CTD helix-swop is membrane
associated (Fig. 2), although compared to NS4B-CTD
more was observed in the non-floating fractions. Alto-
gether these results illustrate that the CTD of NS4B can
interact with membranes via the positively charged resi-
dues, comparable to d-LDH MBD.
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Sequence similarity between NS4B carboxy terminal domain and the membrane binding domain of D-lactate dehydrogenaseFigure 3
Sequence similarity between NS4B carboxy terminal domain and the membrane binding domain of D-lactate 
dehydrogenase. A. Multiple sequence alignment of the carboxy terminal domain of four genotypes of HCV NS4B proteins 
and the membrane binding domain of four d-LDH family members (referenced by their accession numbers). Bold residues high-
light amino-acids present in both families. Basic residues (R, K, H) making up the potential electropositive surface are indicated 
(+). Dotted line indicates disordered region in the d-LDH crystal structure. Arrowheads point to mutations made in the CTD 
of NS4B. B. Ribbon representation of the membrane anchored side of d-LDH (PDB code 1F0X). Stick residues indicate the 
surface exposed amino-acids of the ordered membrane binding helix.
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Positively charged residues of NS4B carboxyl terminal 
domain are essential for replication
To examine the importance of the NS4B-CTD positively
charged residues for RNA replication, we exchanged these
amino acids involved in membrane association for nega-
tively charged glutamic acids in selectable subgenomic
replicons [9]. Huh7 cells transfected with replicon RNA
that carry the three negatively charged residues (NS4B-
CTD tripleE) did not yield any viable colonies (Fig. 5).
Moreover the single mutations K247E and R248E were
replication defective and gave no colonies (Fig. 5). Thus
the positive residues are clearly indispensible for viral

RNA replication in cell culture, suggesting that loss in
membrane association leads to a replication defect. These
results, together with the possible functional parallel
between d-LDH MBD and the NS4B-CTD, prompted us to
swop the membrane binding helix from d-LDH MBD
(PPRMKNWRDK) into replicons (helix-swop, Fig. 3a) and
determine colony formation. These replicons in which
eight amino acids are exchanged indeed formed several
viable colonies (40 colony forming units per ug (CFU) of
transfected replicon RNA) (Fig. 5). Clearly, far less colo-
nies were formed relative to wild type (~10.000 CFU), but
the replication defect from the helix swop is less than the
negative charged mutations, where no colonies were
formed. Two separate replicon colonies derived from the
NS4B-CTD helix-swop were expanded, RNA isolated and
sequenced to analyze whether they still contained the
original mutations. Interestingly, the complete intro-
duced helix was retained, confirming the importance of
this membrane contacting helix.

Discussion
Compared to other HCV proteins NS4B is the least char-
acterized. Besides involvement in replication and induc-
tion of membrane rearrangements little is known about
the function(s) of the protein. A well-conserved part of
NS4B is the carboxy terminal domain (CTD) (Additional
file 1), which is predicted to contain two alpha-helixes
and expected to localize cytosolically [20,23]. Surpris-
ingly, we found using different approaches that the NS4B-

Cellular distribution of NS4B carboxy terminal domain mutants and D-lactate dehydrogenase membrane binding domain in Huh7 cellsFigure 4
Cellular distribution of NS4B carboxy terminal 
domain mutants and D-lactate dehydrogenase mem-
brane binding domain in Huh7 cells. A. The panels on 
the right show Huh7 cells expressing different NS4B-CTD 
mutants or d-LDH membrane binding domain (d-LDH MBD) 
after 24 h. Expression constructs are shown in red. Using 
COX-IV as a marker protein, mitochondria are shown in 
middle panels and in merged picture in green. On the right a 
schematic view of the different NS4B-CTD mutants is drawn; 
in red the sequence of NS4B-CTD-wt, in black the mutations 
made and in green the exchanged amino acids from the 
membrane contacting helix of the d-LDH-MBD. B. Huh7 
cells were co-transfected with NS4B-CTD-HA and d-LDH 
MBD-Myc and analyzed by immunofluorescence after 24 h of 
expression. The first panel shows d-LDH MBD, which is pre-
sented as red in the merged picture. NS4B-CTD is displayed 
in the second panel and is shown in the merged picture as 
green.
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Effect of NS4B carboxy terminal mutations on colony forma-tion using selectable repliconsFigure 5
Effect of NS4B carboxy terminal mutations on col-
ony formation using selectable replicons. Colony for-
mation assay in which Huh7 cells are transfected with in vitro 
transcribed replicon RNA that contain NS4B-CTD muta-
tions. Colonies were stained using Coomassie blue. Wild-
type is pFK5.1. Mock transfected cells as the control. The 
NS4B-CTD mutations TripleE, E247, E248 and helix-swop in 
pFK5.1 are explained in figure 4.
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CTD is membrane associated. Immunofluorescence anal-
ysis of Huh7 cells expressing NS4B-CTD shows punctated
structures (Fig. 1). Furthermore in a membrane floatation
gradient, we could demonstrate that fractions containing
floating membranes also have NS4B-CTD (Fig. 2). Using
profile-profile searches, we found similarity between the
CTD of NS4B and the membrane binding domain (MBD)
of D-lactate dehydrogenase (d-LDH) (Fig. 3a). D-LDH is a
prokaryotic respiratory enzyme that is located on the
cytosolic side of the inner membrane [39]. When we
expressed the MBD of d-LDH from E. coli in mammalian
Huh7 cells and performed immunofluorescence, we
observe a pattern similar to NS4B-CTD (Fig. 4a). Nearly
complete overlap of both signals was shown in a co-trans-
fection experiment of NS4B-CTD and the MBD of d-LDH
(Fig. 4b), indicating a functional parallel of both domains
in membrane association. D-LDH is suggested to anchor
to the membrane via interactions of positively charged
amino-acids with the negative heads of membrane phos-
pholipids [39-41]. Substitution of three positive residues
in the NS4B-CTD resulted in complete loss of membrane
association (Fig. 4a). Together these experiments strongly
suggest association of the NS4B-CTD to membranes.

The localization of NS4B-CTD to mitochondria is the
most prominent (Fig. 1b and 4a). However, there is no
complete co-localization as a fraction is targeted to the ER
(Fig. 1a) and the plasma membrane (Fig. 1b, Inset). In
addition, the d-LDH MBD, a general membrane binding
domain that normally targets the enzyme towards the
cytosolic side of the inner membrane of/in E. coli through
electrostatic interactions, is largely located on mitochon-
drial membranes when expressed in human Huh-7 cells
(Fig. 4a) [39]. The apparent preference for mitochondria
might be caused by the slow turnover rate of mitochon-
drial membranes compared to the rapid turnover of ER
and Golgi membranes [43]. A more general membrane
association characteristic of the NS4B-CTD is implied by
these results.

Given the similarity between the CTD of NS4B and the d-
LDH membrane binding domain, the mode of general
association to the membrane, through electrostatic inter-
actions [39-41], might be comparable as well. When we
substituted three positive residues in the NS4B-CTD
region corresponding to the MBD of d-LDH into negative
residues, to create repulsion towards the negative head-
groups of lipids, membrane association is lost (Fig. 2 and
Fig. 4a, NS4B-CTD tripleE), as well as the ability to form
subgenomic replicon colonies (Fig. 5). Single substitution
of each positive residue in the NS4B-CTD resulted in a
mild loss of membrane targeting (Data not shown),
though a complete loss of replicon colony formation (Fig.
5). It was previously shown that the integrity of NS4B is

important for HCV replication; changes of only one
amino acid can already influence replication [44,45].
Mutants in which we exchanged the complete membrane
contacting helix of NS4B-CTD with the d-LDH membrane
interface helix, retained membrane targeting (Fig. 2 and
Fig. 4a, NS4B-CTD helix-swop) and selectable replicon
colonies were obtained (Fig. 5). Nonetheless, in this
NS4B-CTD helix-swop fewer replicon colonies were
formed compared to wild type. Moreover the introduced
sequence was unchanged in these colonies. In the NS4B-
CTD helix-swop mutant eight amino acids are substituted
and it gains in total one positively charged residue com-
pared to NS4B-CTD, though this charge is distributed dif-
ferently along the helix. Both the immunofluorescence
assay and the colony formation assay illustrate that these
mutations are allowed and indicate similar function of the
two domains, NS4B-CTD and d-LDH MBD. Our experi-
ments give an indication that the CTD of NS4B targets to
membranes via electrostatic interactions of the positive
residues in the NS4B-CTD with the negative phosphates
of the phospholipids (Model in Fig. 6), moreover that this
protein-membrane interaction is important for HCV RNA
replication.

The NS4B protein is associated with membranes in vari-
ous ways. Four to five transmembrane domains in the
central region [20,23] and an amphipatic helix at the N-
terminus of the protein [22] were described previously. In
addition we now show that the CTD of NS4B is a mem-
brane binding domain. This stresses the importance of
protein-membrane interaction throughout the protein.
For the NS4B-CTD we can envisage several possible func-
tions. One possibility might be to position this domain of
NS4B in a correct orientation. Recently, a membrane

Model of NS4B membrane associationFigure 6
Model of NS4B membrane association. Schematic of 
the proposed topology of NS4B relative to the ER membrane 
and reported functional properties (see introduction). Model 
for NS4B-CTD membrane association is discussed in this 
paper. Here we propose that positive residues (amino acids 
are indicated) are important for membrane targeting through 
the interaction with the negative head groups of phospholip-
ids. Abbreviations: Nt, Amino terminus; Ct, Carboxyl termi-
nus; bZIP, basic leucine zipper motif; TMx, transmembrane 
segment X.
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binding amphipatic helix in NS3, together with the trans-
membrane domain of NS4A, were suggested to properly
position the NS3/4A protease on the membrane [11]. Pos-
itive residues in a MBD can also stabilize the orientation
on the membrane surface [46]. In analogy, membrane
contacts of NS4B-CTD might position the domain on the
membrane surface or facing towards the cytosol.

NS4B is involved in the formation of membranous web
structures [18]. Therefore, a function of the NS4B protein
might be the induction of membrane curvature. The N-
terminal amphipatic helix could act as a wedge inserted
into one leaflet of the lipid bilayer leading to membrane
curvature [47,48]. Also transmembrane domains can
influence membrane curvature, depending on their coni-
cal shape [47]. The CTD of NS4B might induce or stabilize
curvature by bracing the membrane like a scaffold
[47,48].

An interesting question for both the N-terminal amphi-
patic helix and the CTD membrane binding domain of
NS4B is whether these bind to the same membrane (cis)
as the central transmembrane helices or that these can
bind to other cellular membranes in close proximity
(trans). In the latter situation it is conceivable that such a
membrane-protein-membrane interaction would bring
different membrane surfaces into close proximity, result-
ing in convoluted membranes [19].

Recently, the positively charged amino acids that we pro-
pose to interact with the lipid head groups, were also indi-
cated in RNA-binding with an apparent preference for
minus strand 3'NTR [25]. When we co-transfected NS4B-
CTD together with an excess of minus strand 3'NTR RNA,
no change in localization of the NS4B-CTD could be
observed (data not shown). This indicates that membrane
association is not affected by the suggested RNA binding
characteristics of the domain in the presence of RNA.

Clearly, the HCV life cycle is achieved by the interchange
between membranes, protein membrane anchors and
proteins. The membranous web formation for replication,
possibly lipid droplet associated membranes are involved
in virus particle assembly [16,33]. The switch between
active replication and assembly of infectious virus parti-
cles requires further levels of interactions between the
membranous web and other associated membranes both
in time and space [33,49,50]. The modular domain archi-
tecture and association to membranes of NS4B suggests
various functions throughout these processes.

Methods
Antibodies
The following antibodies were used anti-PDI (Stressgen),
anti-Myc (mouse) (Invitrogen), anti-Myc (rabbit)
(Roche), anti-GAPDH (SantaCruz), anti-Transferrin

receptor, clone H68.4 (Zymed Laboratories Inc), anti-
COX-IV (Abcam), anti-Calnexin (BD) and anti-HA
(Abcam).

Cell culture and transfection
Human hepatoma cell line Huh7 was grown in Dul-
becco's Modified Eagle's Medium supplemented with
Non-essential amino acids, L-glutamate, Penicillin and
Streptavadin. Cells were subcultured using Trypsin and
transfected using Fugene6 (Roche) at a DNA/reagent ratio
of 1/3, according to manufacturers' instructions.

Plasmid Construction
To construct Myc-epitope-tagged expression plasmids, the
sequence was amplified by PCR from pFK5.1Neo [51] or
E.coli DNA using specific primers, see Table 1. The PCR
products were digested with KpnI and XbaI and ligated
into pCDNA3.1mychisB (Invitrogen) similarly digested
with KpnI and XbaI. This resulted in the construction of
expression vectors containing a 10-residue Myc-epitope-
tag at its C-terminus. In order to construct HA-epitope-
tagged NS4B expression constructs, the Myc-epitope
sequence was XbaI – PmeI cut and replaced with an XbaI –
PmeI fragment coding for the HA-epitope.

In vitro transcription, electroporation and selection of 
selectable replicon cells
In vitro transcription, electroporation and selection of
G418-resistant cell lines was done as described previously
[52].

Immunofluorescence microscopy
24 h post transfection cells were fixed with 3% parafor-
maldehyde (PFA) in PBS (154 mM NaCl, 1.4 mM Phos-
phate, pH 7.5). PFA was quenched using 50 mM NH4Cl
in blockbuffer, which contained 5% fetal calf serum (FCS)
in PBS. The cells were permeabilized with 0.1% TritonX-
100 in blockbuffer and stained with primary antibodies
diluted in blockbuffer for 1 h. Next the coverslips were
washed with glycinebuffer, 10 mM glycine in PBS, and
incubated with secondary antibody diluted in blockbuffer
for 1 h. After washing with glycinebuffer, PBS and water,
the coverslips were mounted with Prolong (Invitrogen)
mounting medium. Fluorescence images were captured
using a Zeiss Axioskop 2 fluorescence microscope
equipped with the appropriate filter sets, a digital Axio-
cam HRc camera and Zeiss Axiovision 4.4 software.
Images were optimized with Adobe Photoshop CS2.

Floatation gradient
Transfected Huh7 cells were lysed after 24 h in buffer that
contained 20 mM Tris pH 7, 1 mM MgCl2, 15 mM NaCl
and 240 mM sucrose using a ball bearing homogenizer
(Isobiotec, Heidelberg Germany). Whole cells and cell
debris was spun down at 500 × g for 5 min and superna-
tant was collected. Cell extracts were mixed with sucrose
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to 80% w/v and overlaid with a linear sucrose gradient
(80%–10% w/v sucrose, 50 mM Tris pH 7, 1 mM MgCl2,
15 mM NaCl). After centrifugation in a SW41 tube for 15
h at 100,000 × g (Beckmann ultracentrifuge), 500 μl frac-
tions were collected from the top. The odd fractions were
analyzed by western blotting, either directly or subse-
quent to concentration. 200 μl of each fraction was con-
centrated using 9 volumes of ethanol and incubated
overnight at -20°C, followed by centrifugation at max in
an Eppendorf 5417R for 1 h. The protein pellets were dis-
solved in 1× Laemmli.

SDS-Page and western blotting
After separation on SDS-PAGE gels, proteins were trans-
ferred to PVDF membranes (HydrobondP, GE-Health-
care) using a Semi-Dry blot apparatus (Biorad).
Membrane blocking and antibody incubations were per-
formed using 0.5% Tween-20, 5% non-fat, dry milk
(Campina) in PBS. Since all secondary antibodies were
conjugated to horseradish peroxidase, the proteins were
visualized using enzyme-catalyzed chemoluminescence
(ECL+, GE-Healthcare) and Fuji Super RX medical X-ray
film.

Profile searches of sequence databases
COMPASS http://prodata.swmed.edu/compass/, data-
base pfam21.0, 0 PSI-blast iterations, E-value threshold
was set at 10. Profile comparer (PRC; http://supfam.org/

PRC), database pfam22.0, E-value threshold was set at 10.
HHpred http://toolkit.tuebingen.mpg.de/hhpred,
selected database pfamA_22.0, 0 PSI-blast iterations.
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Multiple sequence alignment of NS4B carboxy terminal domain and 
Lact-deh-memb. Top panel contains a multiple sequence alignment of 
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Table 1: Primers used to generate expression constructs

NS4B FL

Forward primer, GTGGGTACCATGTCACACCTCCCTTACATCGAACAG
Reverse primer, TAGTCTAGAGAGCCGGAGCATGGCGTGGAGCAGTC

NS4B-CTD

Forward primer, GTGGGTACCATGGCGATACTGCGTCGGCACGTGGGC
Reverse primer, as NS4B FL

NS4B-deltaCTD

Forward primer, as NS4B FL
Reverse primer, TAGTCTAGAGACCGACGCAGTATCGCTGCGCACACGAC

NS4B-CTD sub-Cys

Forward primer, as for NS4B-CTD
Reverse primer, AGATCTAGAGAGCCGGAGGATGGCGTGGAGGAGTCCTCGTTGATCCACTG

d-LDH MBD

Forward primer, GTGGGTACCATGAAATACGGCAAAGACACCTTCC
Reverse primer, TACTCTAGAGAATGCTCGTATTTATCGC
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