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Abstract

Recombination is known to play a role in the ability of various viruses to acquire sequence diversity.
We consequently examined all available West Nile virus (WNV) whole genome sequences both
phylogenetically and with a variety of computational recombination detection algorithms. We
found that the number of distinct lineages present on a phylogenetic tree reconstruction to be
identical to the 6 previously reported. Statistically-significant evidence for recombination was only
observed in one whole genome sequence. This recombination event was within the NS5
polymerase coding region. All three viruses contributing to the recombination event were originally
isolated in Africa at various times, with the major parent (SPUI 16_89_B), minor parent (KN3829),
and recombinant sequence (AnMg798) belonging to WNV taxonomic lineages 2, la, and 2
respectively. This one isolated recombinant genome was out of a total of |54 sequences analyzed.
It therefore does not seem likely that recombination contributes in any significant manner to the
overall sequence variation within the WNV genome.

Background

The species West Nile virus (WNV) is a member of the fam-
ily Flaviviridae, genus Flavivirus. West Nile virus is a posi-
tive-sense, single-stranded RNA virus that has 6 separate
phylogenetically-distinct lineages which correlate well
with the geographical point of isolation [1]. Sequence var-
iation in positive-sense RNA viruses such as flaviviruses,
can occur via single base changes and small insertions and
deletions within the linear evolutionary pathway of the
virus lineage [2-4]. In addition, larger scale sequence
changes can occur via exchange of genetic information
with other related viruses via the process of recombina-
tion [5,6]. Recombination has been detected in several
members of the Flaviviridae family including: hepatitis C
virus [7] and dengue virus [8,9]; and it has been hypothe-

sized that West Nile virus would follow suit as more
sequence data becomes available [10].

Homologous recombination in single-stranded RNA mol-
ecules occurs via a template-switch [11], also called copy-
choice [12], mechanism. More specifically, when two pos-
itive-polarity, single-stranded RNA viruses belonging to
the same species co-infect a single cell, a replicating viral
RNA-dependent RNA polymerase (RARp) can dissociate
from the first genome and continue replication by bind-
ing to, and using a second distinct genome as the replica-
tion template. This dissociation process is thought to be
initiated by the RdRp pausing or stalling at specific
sequences or RNA structural elements [11,13,14]. The act
of moving the RARp complex from one "parental"
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genome to another yields a chimera "daughter" viral
genome containing one fraction of the first "parental”
genome and the other fraction of the second "parent"
genome.

Such recombination events in natural sequences are diffi-
cult to detect in the wet-lab due to the sequence similarity
that exists between parental and daughter sequences at
any putative recombination breakpoint [15]. As a conse-
quence of this fact, in silico techniques have been devel-
oped to assist in this endeavor. These algorithms function
by comparing all possible combinations of three
sequences at a time from a multiple sequence alignment
to determine whether or not a nucleotide pattern signify-
ing the presence of a recombination breakpoint exists
within between any 3 sequences (two parental, and one
recombinant).

To manually detect phylogenetic incongruencies between
different regions of the aligned genomes, we analyzed
portions of the MSA containing: the complete NS5 coding
region, the NS5 coding region lacking the recombinant
region, or only the region within the NS5 coding sequence
that showed evidence of recombination. MrBayes was
then used to reconstruct separate consensus phylogenetic
trees using the parameters described below. The topolo-
gies of these three trees were compared to confirm recom-
bination within the region.

Results

Phylogenetic Tree Reconstructions

When a Bayesian phylogenetic tree was reconstructed (fig-
ure 1), we found that the high number of sequences
included in the present study maintained the 6-lineage
topology present in trees published previously [1]. These
lineages tend to correspond more with the general geo-
graphical location of isolates than with their temporal
point of isolation or their host pathogenicity [16,17].

Detection of Recombination in Whole Genome Sequences
In order to determine the extent of recombination within
these whole genome WNV sequences, we used a suite of
recombination detection programs including: RDP,
GENECONYV, BootScan, MaxChi, Chimaera, SiScan, Phyl-
Pro, LARD, and 3Seq; as well as the SplitsTree program.
After comparing all 154 genomes (11,781 sequence com-
parisons), only one significant recombination event was
detected (See additional file 1 and additional file 2 for the
results from this analysis). For this single event, five of the
nine algorithms detected significant recombination at the
same location in the genome with p-values ranging from
4.936 x 10-2to 7.235 x 108 (table 1). An additional algo-
rithm detected recombination at the same location,
although it lacked a statistically significant p-value. The
location of the significant recombination breakpoint was
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in the NS5 coding region of the AnMg798 sequence iso-
lated from a parrot in Madagascar in 1978. This sequence
was marked as the daughter, or recombinant, with the
major parent being the SPU116_89_B sequence isolated
from a human in South Africa in 1989 and the minor par-
ent being the KN3829 sequence isolated from a mosquito
in Kenya in 1998. The lineages for these three sequences
are 2, 2, and 1a respectively (table 2).

Confirmation of Recombination Event

We confirmed the region identified as containing the
recombination breakpoint by comparing the phyloge-
netic tree topologies of the entire NS5 coding region (data
not shown) or the NS5 coding region without the recom-
binant region (figure 2A) (both of which produced topol-
ogies essentially the same as for the whole genome), to the
putative recombinant region (figure 2B). For the recom-
binant region, we not only saw a change in the topology
of the trees, but a decrease in the distance, or number of
changes, which separates the daughter (AnMg798) and
minor parent (KN3829) sequences from each other in the
recombinant region. We realize that the recombinant
region contains 235 nucleotide positions and that only 81
(34.45%) of those positions are parsimony-informative.
Nevertheless, sufficient phylogenetic resolution was
maintained to allow confirmation of the recombination
event by examining the similarity existing between the
minor parent and recombinant sequences represented by
differences in the overall topology of the tree. It should be
noted that although RDP3 can reliably predict the paren-
tal sequences that are involved in any recombination
event, there is a noticeable lack of both sequence variation
and phylogenetic separation in the lineage 1a sequences
within the recombinant region. It is therefore possible
that the minor parent may have been another lineage 1a
sequence or a related ancestor; however, we are confident
that the recombinant sequence (or its ancestor) was cor-
rectly identified.

Discussion

The purpose of the present study was to examine a dataset
consisting of multiple whole genome WNV sequences in
order to determine the extent to which recombination
contributed to the overall sequence variation within the
this viral species and compare the contribution of recom-
bination in WNV to that in other members of the Flaviviri-
dae family.

We confirm the fact that WNV isolates can be grouped
into 6 distinct phylogenetic clades or lineages [1,18].
Whether this implies that only 6 such lineages exist can
only be confirmed with the acquisition of more sequence
data. While the genetic differences producing these sepa-
rate clades have apparently been produced as a result of
geographic isolation, it is possible that temporal, host
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Whole Genome Phylogenetic Tree. Bayesian phylogenetic tree reconstruction of 154 whole genomic WNYV (and Kunjin
virus) sequences. The 6 distinct lineages are maintained and are delineated by red brackets. Branch lengths are proportional to
distance (the number of nucleotide changes), and the distance scale for the number of changes is provided at the bottom of the

figure.
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Table I: Recombination Statistics

Algorithm Recombination P-value NT Position
RDP 4.936 x 102 9396-9630
GENECONV 2.033 x |06 9396-9630
BootScan 8.269 x |10~ 9396-9630
MaxChi n/a n/a
Chimaera n/a n/a
SiScan 3.600 x 10! 9396-9630
PhylPro n/a n/a
LARD 7.235 % |08 9396-9630
3Seq 3.986 x 103 9396-9630

genetic, immune, and/or additional factors may also play
some role in the generation of WNV diversity in these, or
other replicating lineages.

Previous studies attempting to detect recombination in
West Nile virus used only the envelope coding region
[10]. For our current study, we hoped to increase the sen-
sitivity of the analysis by utilizing the entire genome
sequence for recombination detection. In spite of this, we
were only able to detect one recombination event among
all of the 154 WNV isolates that are available as complete
genomic sequences. The NS5 region containing this
recombination event is known to contain the WNV-spe-
cific loop/alpha-helix as well as the back subdomain of
the RNA template tunnel [19].

Although recombination within certain species of the Fla-
vivirus genus has been reported as fairly frequent--an
observation which may likely be attributed to the vector-
vertebrate host life cycle that is exploited by these arbovi-
ruses [10], it is not common across all species within the
genus. Recombination is rare in Japanese encephalitis
virus and St. Louis encephalitis virus, while recombina-
tion appears to be relatively frequent among the four sero-
types of dengue virus with at least one known
intergenotypic recombination event in serotype 1
[5,6,10]. Recombination also seems to be a relevant cause
of genetic diversity within the Hepatitis C virus species
(Hepacivirus genus). Such events have mostly been
reported between genomes belonging to different geno-
types or subtypes [7,20]; however, very few intra-subtype
recombination events have been reported perhaps due to
the difficulty of detecting recombination between very
closely related viral genomes [21]. Since WNV is more

Table 2: Recombinant Sequences
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closely related to Japanese encephalitis virus and St. Louis
encephalitis virus than to either hepatitis C virus or den-
gue virus [22], its ability to utilize recombination as a
mechanism for generating sequence variation may also be
more limited.

We believe that this recombination event was identified
because of the sequence variation existing between the
two original parental lineages, and subsequently passed
down through the progeny of the recombinant virus.
Whether intra-lineage recombination is detectable is still
unknown due to the high sequence similarity existing
between such sequences. This idea is further supported by
the previous observations that purifying selection pres-
sure is present in arthropod-borne viruses [23], and that
the sequence diversity present within the distinct lineages,
and by extension, throughout the WNV species as a whole
is remarkably low [24]. These arguments support our find-
ing that the occurrence, and consequently the detection,
of recombination within WNV is an especially rare event.

It is also important to realize that even though recombi-
nation was detected to have occurred between the
SPU116_89_B and KN3829 sequences to yield the
AnMg798 sequence, these are not likely the actual
sequences that participated in the original recombination
event. This statement is based on the knowledge that these
sequences differ both in time and place of isolation, it is
therefore probable that they are progeny of the original
parental (and daughter) sequences. These extant
sequences were likely flagged as having undergone a sta-
tistically significant recombination event due to the con-
servation of the original ancestral recombinant signal in
the descendents.

Unfortunately, the sequence and metadata associated
with these isolates is insufficient to determine the tempo-
ral or geographical point of origin for either the ancestral
parental or daughter sequences. Therefore, while we know
that the strains were isolated from eastern Africa, it is
impossible to determine whether the ancestral parental
strains were originally located adjacent to each other geo-
graphically or whether a bird, mosquito, human or other
host infected with one of the parental strains migrated to
an area where the second parental strain was either
present or endemic. Either of these possibilities would
result in the introduction of one of the parental strains

Name Accession Year Location Lineage Host Recombination
SPUI16_89 B EF429197 1989 South Africa 2 Human Major Parent
KN3829 AY262283 1998 Kenya la Mosquito Minor Parent
AnMg798 DQ176636 1978 Madagascar 2 Parrot Daughter
Page 4 of 7

(page number not for citation purposes)


http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF429197
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY262283
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ176636

Virology Journal 2009, 6:165

A
0.1
4
-1a
[
— |
£SPU116 89 B
! Anl\/lg7g§
-3
Figure 2

— AnMg798
2 SPU116 89 EE|2
i £

http://www.virologyj.com/content/6/1/165

0.1

-1a

|
f

=>

Phylogenetic Trees Showing Recombination. Shows the Bayesian consensus trees for (A) the NS5 coding region lacking
the recombinant region and (B) only the recombinant region. The labels for all non-recombinant taxa were removed for clarity.
The translocation of the AnMg798 sequence from the lineage 2 clade in panel A to the lineage |a clade in panel B indicates the
presence of recombinant sequence within this region. Major parent, minor parent, and daughter sequences are shaded in blue,
green, and red respectively. Lineages are indicated as in figure |. Branch lengths are proportional to distance (the number of
nucleotide changes), and the distance scale for the number of changes is provided at the top each panel.

into the same territory as the other and would allow for
co-circulation of both viruses within the local environ-
ment until they eventually infected the same host and the
recombination event occurred. It is also impossible with
the present amount of information to determine which
organism was co-infected and produced the recombinant
virus.

There are several possible biological reasons why recom-
bination may be so rare in WNV and therefore why we
were only able to detect recombination in only 1 of the
154 WNV whole genome sequences. First, it has been
shown that the concentration of WNV in the blood
throughout the human portion of the replication cycle is

low [25], which markedly decreases the probability that a
single cell would become infected with the two distinct
viral isolates required for recombination to occur. This is
in contrast to infection in birds, the natural reservoir of
WNV, which in some avian species can result in high lev-
els of viremia [26]. So the possibility exists for a single
avian cell to become infected by multiple strains of virus.
Therefore the possibility remains for recombination to
occur in birds (though if present, our analysis would have
detected recombination within the available sequenced
isolates irrespective of where recombination may have
occurred). Secondly, it has also been shown in vitro that
the WNV RNA polymerase is more likely to abort RNA
replication after falling off of a template molecule than it
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is to reinitiate on a homologous RNA template [27]. This
will decrease the likelihood of recombination in either the
human or avian host.

Conclusion

Using bioinformatics analysis, we were able to detect only
a single incidence of recombination in available
sequenced isolates of WNV. And in addition, reports indi-
cate that the capability of the RdRp to template switch-
and by extension to cause recombination-in WNV is
severely diminished. For these reasons recombination
appears not to be a likely mechanism for the generation of
sequence diversity in West Nile virus.

Methods

Muttiple Sequence Alignments and Phylogenetic Trees

To look for recombination in WNV isolates, we used 154
whole genome Kunjin virus and West Nile virus sequences
(See additional file 3 for the original data used) obtained
from the Viral Bioinformatics Resource Center http://
www.vbrc.org. A multiple sequence alignment (MSA) of
these genomes was constructed using MUSCLE [28]. Phy-
logenetic reconstruction of all available genomic
sequences was performed using Bayesian analysis as
implemented by the program MrBayes [29]. We used the
default parameters in MrBayes (General Time Reversible
evolutionary model, gamma-distributed rate variation
and proportion of invariable sites) and sampled every 100
generations for 1 million generations using 4 chains. The
first 2,500 trees were discarded as "burn-in".

Recombination Analysis

For detection of recombination events, we used the auto-
mated suite of algorithms contained within the Recombi-
nation Detection Program 3 (RDP3) [8,30-38] to analyze
the complete genomic sequences present in our MSA. In
general, we used the default settings for each program in
the RDP3 suite except for the following: for RDP we used
a window size of 30; Bootscan used a window size of 200,
step size of 50, and 50 bootstrap replicates; Siscan used a
window size of 200 and step size of 20; and RDP3 was set
to report all hits detected by 2 or more algorithms. In
order to confirm the results from the automated tests,
additional algorithms which are not part of the auto-
mated process were also run. SplitsTree4 [39] was used
with default settings to assess the presence of a reticulated
phylogenetic network as a representation of recombina-
tion (unpublished data).
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minor parents are shown in orange, between the minor parent and daugh-
ter sequence in purple, between the major parent and the daughter
sequence in blue, and for the nearest outlier sequence in white.
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