Virology Journal

Research
Characterisation of a Gll-4 norovirus variant-specific
surface-exposed site involved in antibody binding

O

BiolVled Central

David ] Allen*12, Rob Noad?#4, Dhan Samuel3, Jim ] Gray!, Polly Roy? and

Miren Iturriza-Gomaral

Address: 'Enteric Virus Unit, Virus Reference Department, Centre for Infections, Health Protection Agency, Colindale, London, NW9 5EQ,
2Pathogen Molecular Biology Unit, Department of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street,
London, WC1 5HT, 3Serology Development Unit, Virus Reference Department, Centre for Infections, Health Protection Agency, Colindale,
London, NW9 5EQ and “Department of Pathology and Infectious Diseases, Royal Veterinary College, Hawkshead Lane, Hatfield, AL9 7TA, UK

Email: David J Allen* - davidjamesallen@gmail.com; Rob Noad - rnoad@rvc.ac.uk; Dhan Samuel - dhan.samuel@hpa.org.uk;
Jim J Gray - jim.gray@hpa.org.uk; Polly Roy - polly.roy@lshtm.ac.uk; Miren Iturriza-Gémara - miren.iturriza@hpa.org.uk

* Corresponding author

Published: 25 September 2009 Received: 25 August 2009
Virology Journal 2009, 6:150  doi:10.1186/1743-422X-6-150 Accepted: 25 September 2009
This article is available from: http://www.virologyj.com/content/6/1/150

© 2009 Allen et al; licensee BioMed Central Ltd.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: The human noroviruses are a highly diverse group of viruses with a single-stranded
RNA genome encoding a single major structural protein (VP1), which has a hypervariable domain
(P2 domain) as the most exposed part of the virion. The noroviruses are classified on the basis of
nucleotide sequence diversity in the VPI-encoding ORF2 gene, which divides the majority of human
noroviruses into two genogroups (Gl and Gll). Gll-4 noroviruses are the major aetiological agent
of outbreaks of gastroenteritis around the world. During a winter season the diversity among the
GIlI-4 noroviruses has been shown to fluctuate, driving the appearance of new virus variants in the
population. We have previously shown that sequence data and in silico modelling experiments
suggest there are two surface-exposed sites (site A and site B) in the hypervariable P2 domain. We
predict these sites may form a functional variant-specific epitope that evolves under selective

pressure from the host immune response and gives rise to antibody escape mutants.

Results: In this paper, we describe the construction of recombinant baculoviruses to express VLPs
representing one pre-epidemic and one epidemic variant of Gll-4 noroviruses, and the production
of monoclonal antibodies against them. We use these novel reagents to provide evidence that site
A and site B form a conformational, variant-specific, surface-exposed site on the Gll-4 norovirus

capsid that is involved in antibody binding.

Conclusion: As predicted by our earlier study, significant amino acid changes at site A and site B

give rise to Gll-4 norovirus epidemic variants that are antibody escape mutants.

Background viral population [1]. Mutation in vivo can have a number
The ability of RNA viruses to maintain plasticity as well as  of effects including increasing the virulence of a virus [2]
functionality in their genome has been well documented  or acquisition of antiviral resistance [3,4]. An important
as a survival mechanism, allowing RNA viruses to adaptto  consequence of the accumulation of point mutations in
changes in their environment, maintaining fitness in the  viral structural proteins is the rise of antibody escape
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mutants [5-7]. RNA viruses generate this diversity in their
genome via the lack of fidelity of the viral RNA-dependent
RNA polymerase (RdRp), and the mutants with most
increased fitness are selected from the progeny by envi-
ronmental factors such as the host immune response.

Norovirus is a genus in the Caliciviridae family, that
includes pathogens of humans and animals [8]. Human
noroviruses are a highly diverse group of viruses with a
single-stranded RNA genome made up of three open read-
ing frames (ORFs), [9]. Noroviruses are classified on the
basis of nucleotide sequence diversity in the ORF2 gene,
which divides the majority of human noroviruses into
two genogroups (GI and GII) and approximately 19
genetic clusters within them [10]. The genogroup II-geno-
type 4 (GII-4) noroviruses have been the dominant circu-
lating strain since the early 1990s [11], and in 2002 a
variant GII-4 norovirus emerged that caused unusually
high numbers of outbreaks of gastroenteritis in the sum-
mer of 2002, and epidemic gastroenteritis around the
world in the winter of 2002/2003 [12]. This variant pos-
sessed a 3 nucleotide (nt) insertion in the hypervariable
P2 domain of the VP1 protein at position 6265. This epi-
demiological pattern was repeated in 2006 when another
novel GII-4 norovirus variant emerged, however, no inser-
tions or deletions were observed in the genome of this
virus (J Gray, personal communication).

Noroviruses are the major aetiological agent of outbreaks
of gastroenteritis in the community and in semi-closed
settings around the world. During a winter season (Sep-
tember-March), the diversity among the GII-4 noroviruses
has been shown to fluctuate, driving the appearance of
new virus variants in the population [13]. Studies of the
genetic diversity of these viruses have shown that new GII-
4 variants appear periodically in the population following
evolution of the viruses along neutral networks, and that
accumulation of mutations in the hypervariable P2
domain results in antibody escape mutant viruses which
go on to cause epidemic gastroenteritis [14-16].

Computer modelling experiments have previously sug-
gested that there are two 3-amino acid motifs (site A and
site B) in the hypervariable P2 domain that define the
appearance of epidemiologically significant GII-4 variant
norovirus strains [14]. Based on these observations, we
predicted that these two motifs may be a functional vari-
ant-specific epitope that evolves under selective pressure
from the host immune response and give rise to antibody
escape mutants.

Due to the lack of a tissue culture system [17] and suitable
animal models in which to study noroviruses, we synthe-
sised recombinant virus-like particles (VLPs) using a bac-
ulovirus expression system based on previously described
methods [18,19]. These VLPs were used to generate mon-
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oclonal antibodies (mAbs) in order to test the functional-
ity of site A and site B. We use these novel reagents to
provide evidence that site A and site B form a conforma-
tional, variant-specific, surface-exposed site on the GII-4
norovirus capsid that is involved in antibody binding, and
that as predicted, significant amino acid changes at site A
and site B give rise to GII-4 norovirus epidemic variants
that represent antibody escape mutants.

Results

Construction of Recombinant Baculoviruses Expressing
Gll-4 Norovirus VLPs

Analysis of sequence data for the strains used in this study
showed >88% nucleotide identity in the ORF2 gene
between strains GII-4v0, GII-4v2 and the reference strain
Lordsdale virus (LV), and >90% nucleotide identity
between GII-4v0 and GII-4v2 sequences (data not
shown). Deduced amino acid sequences for VP1 revealed
>95% similarity between the GII-4v0 virus and LV (data
not shown). Detailed comparison of coding and non-cod-
ing nucleotide sequence substitutions showed that the
majority of non-synonymous substitutions occurred in
the P2 domain (data not shown)

Wild-type VLPs were purified from recombinant baculovi-
rus-infected Sf9 cells and were analysed by EM (Figure
1(d)). Negative staining of preparations showed intact
VLPs had formed for both strains, and no significant mor-
phological variation was observed within the VLP prepa-
rations (Figure 1(d)). Particles were 30-35 nm in
diameter, and the surface structure of the particles could
be visualised at high magnification (Figure 1(d)). The
VLPs were morphologically indistinguishable from native
norovirus virions found in clinical specimens, but >10-
fold more VLPs were observed per viewing field than are
typically observed in clinical specimens.

The two wild-type expressing plasmid constructs pRN-
GIll4v0 and pRN-GIl4v2 were modified by PCR site
directed mutagenesis so that the ORF2 encoded a VP1
protein that was identical to either the GII-4v0 or GII-4v2
parental protein except at either of the putative epitope
positions 296-298 (site A) or positions 393-395 (site B),
where the protein would be of the heterologous (non-
parental) strain (Figure 2). Successful mutagenesis at the
target site without alteration of the remaining norovirus
insert was confirmed through sequence analysis (data not
shown).

All four hybrid VLP-expressing recombinant baculovi-
ruses efficiently expressed VP1 (data not shown). Further,
EM analysis of GII4v0/A2BO, GII14v0/AB2 and Gll4v2/
A2BO VLPs formed by mutant recombinant VP1 proteins
were morphologically indistinguishable from wild-type
VLPs (data not shown). However, the hybrid construct
PRN-GII4v2/A%B2 did not form VLPs, despite expressing
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Figure |

GlI-4 Norovirus Major Sturctural Protein. (a) Schematic representing the norovirus VP| protein, highlighting the hyper-
variable P2 domain and putative epitopes Site A and Site B (as described in Allen et al., 2008). (b) Table showing amino acid var-
iation at Site A and Site B in the period 1999-2006, as previously described in (Allen et al., 2008). Strains used in the work
described here are highlighted. (c) Model of the norovirus VPI P domain showing the location of Site A and Site B in the three-
dimensional protein (structure from Cao et al., 2007). (d) Electron micrograph showing Gll-4v2 VLPs purified from Sf9 cells,
the morphology of which is representative for all VLPs described here. Magnification is 105 000x and VLPs are stained with
1.5% phosphotungstic acid. Scale bar is 100 nm.
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Schematic representation of norovirus protein coding region of pRN16 constructs expressing wild-type and
hybrid VLPs. Following construction of plasmids pRN-GIl4v0 and pRN-Gll4v2 expressing wild-type GlI-4v0 and GlI-4v2 VLPs,
respectively, these plasmid constructs were modified by site directed mutagenesis at either putative epitope site A (nt 886-891,
aa 296-298), or putative epitope site B (nt | 176-1182, aa 383-395) to generate plasmid constructs that expressed hybrid VLPs.
The schematic shows a representation of the region of the plasmid encoding norovirus structural proteins (3'UTR and remain-
der of plasmid not shown for clarity). PCR mutagenesis was used to generate plasmid constructs that encoded an ORF2 iden-
tical to either Gll-4v0 or Gll-4v2, except at either site A or site B, which was modified to be as equivalent to that position in
the heterologous variant. The resulting expressed VP| protein was a hybrid of the two variants, and so the VLP formed from
the hybrid VPI was antigenically hybrid. Plasmid construct names are given on the left, whilst the hybrid VLPs are represented
with VLP names next to them on the right. All GlI-4v0 derived regions are shown in solid black, all Gll-4v2 derived regions are
shown in hatched lines.

VP1 (data not shown), therefore the hybrid VLP GII-4v2/
AOB2 was not available for subsequent work.

Production and Characterisation of Variant Specific Anti-
GlI-4 Norovirus Monoclonal Antibodies
Mice were inoculated with either GII-4v0 VLPs or GII-4v2

In addition to the hybrid VLPs described above, a reverse ~ VLPs, and five monoclonal antibodies were fully charac-

mutant construct, pRN-GII4v0/A9BOR, was also generated
by back mutation of the hybrid construct pRN-GII4v0/
AOB2? by site-directed mutagenesis (Figure 2). This reverted
the amino acid sequence at the site B from STA (GII-4v2)
back to N~N (GII-4v0). This plasmid was sequenced to
confirm the mutation at the target site had taken place,
and that no changes had taken place in the rest of the
insert (data not shown). The plasmid was used as
described to produce recombinant baculoviruses and pro-
duce the VLP GII-4v0/A9BOR,

terised for their isotype, titre and binding specificity
(Table 1). Test bleeds from both GII-4v0 and GII-4v2
inoculated mice prior to fusion showed that only a low
level of cross-reactivity with the heterologous antigen by
ELISA (data not shown).

Urea treatment of the homologous antigen significantly
reduced recognition of the epitope by all of the mono-
clonal antibodies (Table 1), and urea treatment of the het-
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Table I: Monoclonal antibody characterisation.
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Monoclonal Antibody Homologous Antigen Isotype Titre! % Reduction in Binding to Urea-Treated Homologous Antigen
mAbGI14v0.5 Gll-4v0 1gGl 100 71.8%
mAbGlI4v0.8 GlI-4v0 1g§G2a 10 000 80.9%
mADbGII4v0.10 Gll-4v0 1gG2b 10000 79.8%
mAbGII14v2.5 Gll-4v2 1gGlI 10 000 44.0%
mAbGll4v2.6 Gll-4v2 1gGI 10000 51.2%

ITitres were determined by serial dilution between 1:10 and 1:10 000 000 in an EIA. Titres were taken as the reciprocal of the last dilution to give

an optical density >0.5 at 450 nm.

Three anti--GlI-4v0 mAbs (mAbGII4v0.5, mAbGII4v0.8, mAbGII4v0.10) and two anti-Gll-4v2 mAbs (mAbGII4v2.5, mAbGlII4v2.6) were
characterised for reactivity, isotype and titre. The ability of the five mAbs to recognise their respective homologous antigen that had been

chemically denatured was also assessed by ELISA.

erologous antigen did not confer recognition (data not
shown).

Identification of a Variant-Specific Surface-Exposed Site
Involved In Antibody Binding

Each of the three anti-GII-4v0 mAbs displayed a slightly
different binding pattern, although the data suggested
that all three mAbs recognised an epitope formed or influ-
enced by both site A and site B (Figure 3(a)).

More than 75% reduction in binding of mAbGII4v0.5 to
its homologous antigen (GII-4v0) was observed following
blocking with the homologous antigen, whereas no
reduction in binding was observed following incubation
with the heterologous antigen (GlI-4v2). Following
replacement of GII-4v0 site A with the heterologous GII-
4v2 site A, VLP GII-4v0/A2BO failed to block any of the
binding of mAbGII4v0.5 to its homologous antigen, dem-
onstrating that site A is essential for mAb recognition of
the antigen. When the GII-4vO0 site B was replaced with the
GlI-4v2 site B, VLP GII-4v0/A%B?, reduced binding to the
GII-4v0 antigen by ~19% indicating that when the
homologous site A was intact, partial mAb recognition
occurred, but without the corresponding homologous site
B, mAD recognition was impaired. Similarly, substitution
of the heterologous site B in the GII-4v2 with the GII-4v0
site B (VLP GII-4v2/A2B0) was not sufficient for recogni-
tion of this hybrid VLP by mAbGII4v0.5. Importantly,
restoring site B to the VLP GII-4v0/A%B2 was sufficient to
restore wild-type levels of binding, to >70% reduction.

A 25% reduction in binding was observed following
blocking of mAbGII4v0.8 with the homologous GII-4v0
VLP, compared to only 5% reduction in binding follow-
ing blocking with the heterologous GII-4v2 VLP. Blocking
with any one of the three hybrid VLPs resulted in <10%
reduction in binding; the highest level of reduction fol-
lowing blocking among these VLPs was with the GII-4v2/

A2BOVLP which displays site B from the homologous (GII-
4v0) antigen, thereby indicating that mAbGII4v0.8 was
able to partially recognise site B, but that complete recog-
nition required the homologous site A to be displayed
concurrently. Blocking with the reverse mutant VLP GII-4/
AOBOR restored binding reduction to 27%, comparable to
blocking levels by wild-type GII-4v0. This further supports
the observation that both homologous site A and site B
must be displayed simultaneously on the virus surface for
mADb recognition.

Approximately 68% of mAbGII4v0.10 binding was
reduced following blocking by GII4v0 VLP, and only one
tenth of this reduction in binding observed following
blocking with GII-4v2 VLP. Blocking with any one of the
three hybrid VLPs resulted in <10% reduction in binding;
again the highest level of reduction following blocking
with a hybrid VLP was with the GII-4v2/A2B0 VLP which
displays site B from the homologous (GII-4v0) antigen,
suggesting a role for site B in mAb recognition. Blocking
with the reverse mutant VLP GII-4/A0BOR restored binding
reduction to levels comparable to blocking levels by wild-
type GlI-4v0, of approximately 70% reduction. This con-
firmed that both homologous site A and site B must be
present for mAb recognition of the antigen.

Both anti-GII-4v2 mAbs behaved the same in competition
immunoassays (Figure 3(b)). Blocking of both mAbs with
the homologous GII-4v2 antigen resulted in >85% reduc-
tion in binding in both mAbs, and blocking with the het-
erologous GII-4v0 antigen resulted in <2.5% reduction in
both mAbs. When blocking was performed using one of
the two GII-4v0-derived hybrid VLPs (GII-4v0/A2BO, or,
GII-4v0/A%B2), or the reverse mutant VLP, <7.5% reduc-
tion in binding was observed in both anti-GII-4v2 mAbs.
In contrast, blocking with the hybrid VLP GII-4v2/A2B0
(which is all GII-4v2 except at site B) produced reduction
in binding equivalent to that observed with the GII-4v2
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Figure 3

Average percent reduction in binding of (a) anti-Gll-4v0 and (b) anti-Gll-4v2 mAbs to wild-type and mutant
VLPs in a cross adsorption ELISA. As described in the Materials and Methods, each mAb was pre-incubated in a blocking
step with the antigen indicated on the x-axis, before being transferred to a microtitre plate coated with antigen homologous to
the mAbs being tested. Percent reduction in binding was then calculated using a PBS control. Cross absorption assays were
repeated 3 times independently and the average data is presented here with bars showing the standard error of the mean. Car-
toons representing the antigenic structure of the antigen (as described in Figure 2) are shown above the bars (with corre-
sponding labels below the bars). All mAbs were used at 1:10 000 dilution, except mAbGII4v0.5, which was used at 1:1000.
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antigen of >80% reduction. These data indicated that both
the anti-GII-4v2 mAbs recognised an epitope that is vari-
ant specific, but is not formed of either site A or site B,
alone or in combination.

Discussion

Efforts to identify sites on the norovirus capsid involved in
antibody binding have been hampered by the lack of a cell
culture system for human noroviruses [17], and therefore
epitope mapping studies using infectious virus have not
been possible. Here we have used VLPs synthesised in the
baculovirus expression system (BES) as a surrogate for
infectious virus in a mutagenesis study to identify sites on
the GII-4 norovirus capsid important in antibody recogni-
tion. Previous work has shown that when VLPs expressed
in the BES were compared with VLPs expressed in a mam-
malian recombinant protein expression system, no dis-
cernable differences in the biochemistry or structure of the
two differently expressed VLPs were observed [20].

The data presented here show the expression of high
yields of VLPs representing two norovirus strains, one
from each of the previously identified neutral networks:
(i) pre-2002 epidemic, and (ii) 2002 epidemic-200 [14].
These VLPs were used to immunize mice to produce mon-
oclonal antibodies against these strains.

Both the anti-GII-4v0 and anti-GII-4v2 polyclonal anti-
body responses were generally specific for the homolo-
gous antigen, but a low level of cross-reactivity was
observed (data not shown). Cross-reactivity is expected in
polyclonal serum because the different antibodies present
recognise a range of different epitopes, and have different
affinities; therefore polyclonal antibodies will, at least in
part, recognise a heterologous antigen. However, follow-
ing sub-cloning by limiting dilution, cross-reactivity was
lost as mAbs were isolated. This confirmed the specificity
of these antibodies for a single GII-4 norovirus variant
strain through recognition of an epitope that was unique
to that variant norovirus and offered no cross-reactivity
between other GII-4 norovirus variants.

The absence of any cross-reactivity in the EIA between the
mAbs and their heterologous antigen also showed that the
mAbs were not recognising epitopes from baculovirus
proteins or from Sf9 cell-derived proteins. Both antigen
preparations were made in the same protein expression
system and purified in the same way. Therefore any bacu-
lovirus or cell-derived proteins that co-purified with the
VLPs were present in both the GII-4v0 and the GII-4v2
VLP preparations used in the immunization of the mice
and in the preparation used as antigen in the EIA. Thus
any mAb reacting to a baculovirus or cell-derived protein
would react equally with both antigen preparations. This
is not the case, with all mAbs displaying specificity for the
homologous antigen preparation, thereby demonstrating

http://www.virologyj.com/content/6/1/150

that all five mAbs were raised against norovirus proteins
and not baculovirus or insect cell proteins.

Urea treatment of both GII-4v0 and GII-4v2 VLPs revealed
the three anti-GII-4v0 mAbs recognised a conformational
epitope, whereas the anti-GII-4v2 mAbs recognised a par-
tially conformational epitope (Table 1). Treatment of a
macromolecular protein with a chaotropic agent such as 8
M urea will denature the three-dimensional structure of
the protein by disrupting the non-covalent intra-molecu-
lar interactions such as hydrogen bonding and van der
Waals forces. If the mAbs recognised a linear epitope,
binding would remain unaffected following chaotropic
treatment. However, the epitope recognised by the mAbs
must be conformational, as the level of mAb binding to
the antigen was reduced following denaturing treatment
of the antigen. Demonstrating that the mAbs recognised
conformational epitopes was important because site A
and site B identified by sequence analysis [14] were
shown to be surface exposed loop structures on the virus
surface separated by 100 amino acid residues in the linear
protein, but in close proximity in the three-dimensional
protein (Figure 1(a) &1(c)). Therefore, it was expected
that any antibodies raised against these sites would, at
least in part, recognise the conformation of the surface
structure at these positions, which is why it was important
that VLPs were used as the immunogen rather than linear
VP1 protein. This was corroborated through the failure to
detect a VP1 band in western blots (data not shown).

Site-directed mutagenesis was used to modify the norovi-
rus ORF2 gene in the plasmids pRN-GII4v0 and pRN-
GII4v2 at putative epitopes site A (aa296-298) or site B
(aa393-395). The aim was to generate both GII-4v0 and
GlI-4v2 hybrid VLPs which displayed either an heterolo-
gous site A or site B. It was predicted that the changes engi-
neered at site A or site B would differently affect the ability
of mAbs to recognise the antigen, and so demonstrate the
roles of site A and site B as surface-exposed sites involved
in antibody binding.

The three hybrid VLPs that were isolated were found to be
morphologically indistinguishable from wild-type VLPs
as determined by EM, demonstrating that the mutagenesis
had no adverse effect on the structural integrity of the VLP.
The exception was the hybrid VLP expressed from the
recombinant baculovirus BAC-GIIv2/A°B2, which despite
expressing VP1 to high levels, did not form VLPs. As no
coding errors were observed in the ORF2 gene, and a high
level of protein expression was observed by SDS-PAGE,
the lack of VLP formation was not due to truncation of the
protein, failure of the baculovirus and expression vector to
undergo recombination, or failure of the recombinant
baculovirus to express the protein. Therefore, it seems
most likely that the mutations engineered in the P2
domain were structurally unfavourable and that they
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either perturb the correct conformation of the protein or
interfered with the subunit-subunit interactions, thus pre-
cluding particle formation.

It was predicted that the mAbs raised against the GII-4v0
and the GII-4v2 antigens would recognise a site formed of
both site A and site B, or would recognise a site formed of
one of these sites alone. This was tested in a cross absorp-
tion EIA using wild-type VLPs, hybrid VLPs, the reverse
mutant VLP and the five mAbs.

All three anti-GII-4v0 mAbs recognised an antigenic
region formed or influenced directly by both site A and
site B, as replacement of either of these sites abolished rec-
ognition of the GII-4v0 antigen by the mAbs. This obser-
vation was supported by the data from the reverse mutant
VLP. The GII-4v0/A%B2 VLP failed to block binding of the
anti-GII-4v0 mAbs to the GII-4v0 antigen, but reverse
mutation of site B in this antigen back to GII-4v0 concur-
rently restored the ability of the antigen to block mAb
binding. The conclusion that the anti-GII-4vO0 mAbs
require both site A and site B for antibody binding reflects
predictions made using bioinformatics data [14]. It was
noted that epidemiologically significant variant strains
appeared in the population following a cluster transition
event in which biochemically significant amino acid sub-
stitutions (or insertions/deletions) were observed at site A
and site B concurrently which itself suggested that both
site A and site B are required for defining epidemiologi-
cally important strains and allowing GII-4 noroviruses to
evade immunity existing in the population.

The back mutation of the hybrid GII-4v0/A%B2 at site B cre-
ated the VLP GII-4v0/AOBOR that had twice undergone site-
directed mutagenesis at site B, so that it was structurally
and antigenically identical to the wild-type GII-4v0 anti-
gen. This experiment confirmed: (i) that the site-directed
mutagenesis process had no effect on the integrity of the
antigenic properties of the particle, other than those cre-
ated by the targeted mutation, and, (ii) that recognition of
an unrecognised hybrid antigen by a mAb could be
restored by replacement of the mutated site, thus demon-
strating that the mutated site was necessary for antibody
recognition of the antigen.

The anti-GII-4v2 mAbs recognised only the GII-4v2 VLP
and the GII-4v2/A2B0 VLP, therefore demonstrating that
these mAbs recognise either an epitope that is dependent
on site A being in the structural context of the GII-4v2
antigen, but is independent of site B, or, an epitope that is
formed of neither site A nor site B. The former is difficult
to evaluate because the VLP GII-4v2/A%B2 was not availa-
ble, but the latter could be investigated by construction of
a GII-4v2 hybrid VLP with site A and site B from GII-4v0,
which if recognised by the mAbs, would demonstrate that
the mAbs bind a site that is neither site A nor site B. Con-
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versely, if such a VLP was not recognised, this would dem-
onstrate that site A and site B were important for antibody
binding, and more detailed mutagenesis studies where
individual amino acid residues in the GII-4v2 VLP were
mutated would aid in revealing the residues critical for
antibody recognition. Whether the five mAbs described
here recognise the same or different epitopes remains to
be tested in blocking EIAs.

In this study, we have used several well characterised
experimental systems in conjunction with in silico models,
to identify sites on the GII-4 norovirus capsid that are
important in antibody recognition. The use of antigeni-
cally hybrid VLPs to study capsid-antibody interactions
was used as a surrogate for infectious virus because there
is no cell culture system available for these viruses, and
our approach of systematic mutation of VLPs led to the
identification of two 3aa sites on the surface of the capsid
required for antibody binding. Whether the regions iden-
tified in this work represent neutralisisng epitopes
remains to be investigated, but these investigations
remain hampered by the lack of a replicative in vitro sys-
tem or suitable animal model. It would also be interesting
to determine whether the mAbs described here could
interfere with the ability of VLPs to interact with histo-
blood group antigens (HBGAs) when used in a VLP-
HBGA binding assay [21].

Methods

Clinical Samples

Two faecal specimens were selected from outbreaks that
had been characterised by PCR as being caused by a GII-4
norovirus at the Enteric Virus Unit, Centre for Infections,
Health Protection Agency, London, UK. The two viruses
were: (i) a GII-4 norovirus circulating before the 2002 epi-
demic, classified as a variant 0 (GII-4v0) virus; and, (ii) a
GII-4 norovirus circulating after the 2002 epidemic, and
classified as a variant 2 (GII-4v2) virus. Samples were pre-
pared as 10% suspensions in balanced salt solution
(Medium 199, Sigma, Dorset, UK) prior to nucleic acid
extraction.

Nucleic Acid Extraction & Reverse Transcription

Total nucleic acid was extracted from a 250 pl aliquot of
the 10% faecal suspension using a guanadinium isothio-
cyanate/silica method as previously described [22].
Extracted nucleic acid was incubated at 42°C for 60 min-
utes with 50 pmol of poly(T)-TVN primer in Tris-HCI
buffer, pH8.3, 5 mM MgCl,, 1 mM each ANTP, and 200 U
SuperScript® I1I reverse transcriptase (Invitrogen, Paisley,
UK).

PCR and Amplicon Purification

The genes ORF2 and ORF3 encoding the major structural
protein VP1 and the minor structural protein VP2, respec-
tively, and the 3' untranslated region (3'UTR), were
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amplified by PCR using primers ORF1/2-F1 [14] and
TVN-linker. The resulting amplicon
3'ORF1+ORF2+ORF3+3'UTR, was either 2513 bp or 2516
bp in length, depending on the strain. Reactions were per-
formed using High Fidelity PCR System (Roche Diagnos-
tics Ltd, Burgess Hill, UK). PCR amplified amplicons were
purified either from solution using Montage® PCR Filter
Units (Millipore, Watford, UK), or from agarose gels using
Geneclean® Spin Kit (Qbiogene, Cambridge, UK). Both
were used as according to manufacturers' instructions.

Amplicon Sequencing and Sequence Analysis

Sequencing PCR was performed using 10 pmol of primer
and 100 fmol template DNA. All sequencing was per-
formed using GenomeLab™ DTCS - Quick Start Kit (Beck-
man Coulter, High Wycombe, UK) according to the
manufacturer's instructions, and a CEQ8000 automated
sequencer (Beckman Coulter).

Nucleotide sequence contigs were generated from trace
data using the Assembler tool in BioNumerics v3.5
(Applied Maths, Kortrijk, Belgium). Multiple alignment
and phylogenetic analysis was performed using appropri-
ate algorithms in BioNumerics v3.5 (Applied Maths).
Amino acid sequence data was deduced from nucleotide
data and analysed using BioEdit [23], and also using
BioNumerics v3.5 (Applied Maths).

Cloning

Each of the purified 3'ORF1+ORF2+ORF3+3'UTR ampli-
cons was cloned into the vector pCR2.1-TOPO® (Invitro-
gen) according to the manufacturer's instruction. The
3'ORF1+ORF2+ORF3+3'UTR amplicon was then modi-
fied by PCR using primers deigned to: (i) remove the par-
tial 3'ORF1 sequence at the 5' end of the amplicon; (ii)
include two restriction enzyme sites at each end of the
amplicons in order to allow for directional cloning into
vector pRN16; and, (iii) modify the translation initiation
context of ORF2 to match that of the baculovirus polyhe-
drin gene (PH). The GII-4v0 amplicon was modified as
follows: 5'-A-Stul-Sacl-PH-ORF2-ORF3-3'UTR-Xbal-Stul-
A-3'. The GII-4v2 amplicon was modified as follows: 5'-A-
Stul-Kpnl-PH-ORF2-ORF3-3'UTR-Xbal-Stul-A-3'. The vec-
tor pRN16 contains a region of the Autographa californica
nuclear polyhedrosis virus (AcMNPV) around the polyhe-
drin gene (ORF7 (735)) which overlaps the essential
ORF8 (1629) gene. pRN16 was produced by ligating the
BstXI/HindIIl polyhedrin promoter-polylinker fragment
from pAcCL29.1 [24] into BstXI/HindIIl cut pBacPAK8
(BD Clontech). After digestion of both inserts and vector
pRN16 with the appropriate restriction enzymes ligation
was performed using T4 DNA ligase (Fermentas, York) to
produce the plasmids pRN-GII4v0 and pRN-GII4v2.

Positive clones were grown overnight in a 50 ml LB broth
culture containing 50 pg/ml ampicillin, and the plasmid
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isolated using a plasmid preparation kit (Plasmid Midi
Kit, QIAGEN, West Sussex, or SNAP Midi-Prep Kit, Invit-
rogen) according to the manufacturer's instructions.

Site-Directed Mutagenesis

Wild-type sequences for GII-4v0 and GII-4v2 VLPs were
mutated in the P2 domain at site previously identified as
forming a putative epitope [14] (Figure 1(a)-(c)). Plas-
mids pRN-GII4v0 and pRN-GII4v2 were mutated in a site
specific mutagenic PCR reaction at either a 9 nt site at
positions 886-894 (site A), or a 6 or 9 nt site (depending
on the strain) at positions 1176-1182 (site B) from the
GII-4v0 sequence to the GII-4v2 sequence, or vice versa
(Figure 2). For this, the GeneTailor Site-Directed Muta-
genesis System (Invitrogen) was used according to manu-
facturer's instruction, using a touchdown PCR method to
mutate and amplify the plasmids. Mutated plasmids were
transformed into DH5aT1RE. coli cells (Invitrogen) and
purified using SNAP Midi Prep Kit (Invitrogen) according
to manufacturer's instruction.

Purified plasmids were used to generate recombinant bac-
uloviruses as has been previously described [19]. Follow-
ing recombination, a clonal population of recombinant
baculoviruses was obtained by plaque purification. The
resulting recombinant baculoviruses expressed either GII-
4v0 VLPs (BAC-GIIv0) or GlI-4v2 VLPs (BAC-GIIv2).
Plaque purified viruses were used to seed stock cultures of
each virus, and these stocks were titred by plaque assay.

Generation of VLPs

Suspension cultures of Sf9 cells were infected with either
BAC-GII4v0 or BAC-GII4v2 at a moi of 2-3 and incubated
at 28°C for 48-72 hours. Virus-like particles were purified
from the intracellular phase by treatment with phosphate
buffer containing 1% IGEPAL (Sigma Aldrich) and
sequential centrifugation steps for clarification, and
finally through 15%-60% sucrose cushions to concentrate
the VLPs. Fractions were collected and analysed by SDS-
PAGE on a 12% polyacrylamide gel (NuPAGE kit (Invitro-
gen), according to manufacturer's instruction) and elec-
tron microscopy (EM).

Monoclonal Antibody (mAb) Production

BALB/c mice were inoculated subcutaneously with 100 pg
of either wild-type GII-4v0 or wild-type GII-4v2 VLPs in
Freunds incomplete adjuvant in order to produce mAbs.
After boosting the mice fortnightly on a further four occa-
sions, the spleen cells were harvested and fused with
mouse myeloma cells (NSI) by standard procedures [25].

Hybridoma Cloning, Screening and Selection

The fused cells were dispensed into 96 well tissue culture
plates and cultured in RPMI1640+GlutaMAX media (Inv-
itrogen), supplemented with 2% hypoxanthine-thymi-
dine (HT) (Invitrogen), 1% oxaloacetate-pyruvate-insulin
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(OPI) (Sigma) and 1% antibiotic-antimycotic (AbAm)
(Invitrogen). Ten to 14 days post fusion, supernatants
from the fusions were tested for antibodies to GII-4v0 and
GII-4v2 by EIA as described below. Hybridomas secreting
norovirus variant-specific antibodies were then cloned
twice by limiting dilution.

Enzyme-Linked Immunoassay (EIA)

Microtiter plates (Greiner Bio-One, Stonehouse) were
coated with either GII-4v0 or GII-4v2 VLPs at a concentra-
tion of 1 pug/ml diluted in PBS + 0.08% azide at 4°C. A
100 pl aliquot of test supernatants were diluted between 1
in 100 and 1 in 10000000 in PBST, and detection was per-
formed using a rabbit anti-Mouse IgG-HRP conjugate
antibody (Dako, Cambridgeshire) at 1 in 4000 dilution in
conjugate diluent (Microimmune) and TMB Substrate
(Europa Bioproducts, Cambridge).

Isotyping of Monoclonal Antibodies

A 100 pl sample of culture supernatant from each hybrid-
oma was added to coated microtiter plates and antibody
isotype determined using a goat anti-mouse IgG1a, IgG2a,
1gG2b, 1gG2c¢, 1gG3 or IgM (Jackson Laboratories, Maine,
USA) antibody, diluted 1 in 2000 in conjugate diluent
(Microimmune). Detection was performed using rabbit
anti-goat HRP-conjugate diluted 1 in 20000 in conjugate
diluent (Microimmune) containing mouse serum (Sigma-
Aldrich, Dorset, UK) and TMB Substrate (Europa Bioprod-
ucts).

Reactivity of Monoclonal Antibodies with Denatured
Antigen

The EIA was performed as described above, but before the
addition of the mAb to the plate, the VLP antigen bound
to the plate surface was treated with either 8 M urea in PBS
or PBS for 1 hour at room temperature. Wells were then
washed 3 times with PBST and the EIA performed as
described above.

Competitive Inmunoassay

In the competitive immunoassay, monoclonal antibodies
were diluted in PBS 1 in 1000 - 1 in 10000 and pre-incu-
bated with either the homologous or heterologous wild-
type VLP at a concentration of 1 ug/ml, one of the antigen-
ically hybrid VLPs at 1 pg/ml, or PBST as a control. Pre-
incubated monoclonal antibodies were then added to
microtiter plates coated with 1 pg/ml of the homologous
antigen (as described above) to which the monoclonal
antibody was raised. The monoclonal antibody was then
allowed to attach, and detected with an anti-mouse HRP
conjugate antibody in an EIA as described above. Results
are shown as per cent reduction in binding of mAb to
homologous antigen (OD,,) compared to level of bind-
ing in PBST control (ODpger): % reduction in binding =
([ODpgsr - OD et/ ODpggy) x 100.
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