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Abstract

Background: Measles virus attenuation has been historically performed by adaptation to cell
culture. The current dogma is that attenuated virus strains induce more type | IFN and are more
resistant to IFN-induced protection than wild type (wt).

Results: The adaptation of a measles virus isolate (G954-PBL) by |3 passages in Vero cells induced
a strong attenuation of this strain in vivo. The adapted virus (G954-V3) differs from its parental
strain by only 5 amino acids (4 in P/V/C and | in the M gene). While a vaccine strain, Edmonston
Zagreb, could replicate equally well in various primate cells, both G954 strains exhibited restriction
to the specific cell type used initially for their propagation. Surprisingly, we observed that both
G954 strains induced type | IFN, the wt strain inducing even more than the attenuated ones,
particularly in human plasmacytoid Dendritic Cells. Type | IFN-induced protection from the
infection of both G954 strains depended on the cell type analyzed, being less efficient in the cells
used to grow the viral strain.

Conclusion: Thus, mutations in M and P/V/C proteins can critically affect MV pathogenicity,

cellular tropism and lead to virus attenuation without interfering with the o/ IFN system.

Background

Mass vaccination with live attenuated measles vaccines
has greatly reduced the incidence of this disease and its
associated pathologies. Most vaccine strains were estab-
lished after numerous passages on various cell lines. Dur-
ing this period of adaptation, the virus genome mutated
in order to replicate efficiently in cell culture and thus, the
original viral phenotype has been modified by mecha-
nisms which are still poorly understood. The mutations
observed in the RNA genome may be responsible for the

replication of the clinical virus in its new host cell at dif-
ferent levels: entry, transcription, translation or budding.

Measles virus (MV), one of the leading causes of infant
death in developing countries, is a member of the Para-
myxovirus family. Like other viruses of this family, the MV
negative RNA genome is protected by the N protein. Its
association with the replicative complex (P and L pro-
teins) constitutes the nucleocapsid. H (haemagglutinin)
and F (fusion) proteins are surface glycoproteins, set in a
lipid envelope, lined by the M (matrix) protein, and are
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responsible for the attachment and fusion processes. In
addition to the structural proteins, the MV genome
encodes for two accessory proteins, C and V [1].

For many years, few MV wild-type isolates were available
for study. This was mainly due to the choice of the cell line
used for virus isolation. Clinical or wild type MVs use
CD150 (SLAM) as their main host cell receptor to attach
to cells and so are most easily isolated on cell lines
expressing this molecule [2]. The vaccine and vaccine-like
strains, which readily multiply in cells lacking this recep-
tor, were shown to be able to use an additional receptor,
CD46, a ubiquitously expressed molecule [3,4]. Further, it
was established that a critical amino acid (aa) in the MV
H glycoprotein governed the use of the two receptors.
Mutation of aa 481 from asparagine to tyrosine permitted
the wild type strains to attach to CD46 [5]. In vivo, wild
type viruses are reported to infect both endothelial and
epithelial cells, which do not express CD150. Thus, it is
not clear how the virus gets into the host cell. Two differ-
ent hypotheses propose that either the wild type virus
enters using CD46 as a low affinity receptor [6,7] or that
there is another unidentified receptor involved [8-10].

Naniche et al. showed that in contrast to wild type MV
strains, vaccine strains induced high levels of IFN in
peripheral blood mononuclear cells (PBMCs) [11]. More-
over, the wild type strains were more sensitive to exoge-
nous IEN. A number of studies have shown that MV, C
and V accessory proteins may be implicated in both the
inhibition of the induction and action of IFN [12-17].
However, it is still unknown whether the function of C
and V proteins in the regulation of type I IFN system is
altered after virus attenuation. Schlender et al. showed
that a measles vaccine strain (Schwarz) replicates effi-
ciently in plasmacytoid Dendritic Cells (pDCs, the major
producers of type 1 IFN [18]) and blocks IFN induction by
several ligands [19]. Nevertheless, the complexity and the
diversity of the experimental systems previously used
made a clear-cut interpretation of these data difficult in
the estimation of the role of type I IFN in the attenuated
MYV phenotype.

It was shown that viruses isolated on B95a cells could
induce in a monkey model all the clinical features
observed in humans. However, adaptation of the virus to
Vero cells attenuated the pathogenicity of the virus
[20,21]. Sequence comparison of the 2 viruses showed
that there were 5 aa changes in the polymerase (P/V/C and
L) and 3 aa changes in the H [22] affecting the replication
and transcription processes and also the syncytia forma-
tion. In a second study, the attenuating mutations were
restricted to the P and M genes [23] with a deletion of the
C gene. Recently, Tahara et al. adapted a wt strain to Vero
cells and observed mutations in the M and L proteins. The

http://www.virologyj.com/content/5/1/22

adapted virus could grow in cells that did not express
CD150 but was less efficient in the cell/cell fusion process
[24]. The mutation E89K in M was then shown to be
implied in alteration of the interaction between the M and
H proteins [25].

In the present study, we compared G954-PBL, a MV wild
type isolate propagated on PBMCs with G954-V13, a virus
adapted from G954-PBL by 13 passages on Vero cells.
Both strains were shown to have no differences in the H
and F proteins and to use CD150 and not CD46 as a
receptor [10]. Sequence analysis of both G954 viruses
revealed that there were 5 mutations located only in the P/
V/C and M genes. These mutations render the virus highly
attenuated in vivo. Loss of pathogenicity could be related
to different aspects of infection. Both G954 strains seemed
to be restricted to specific cell types initially used to prop-
agate the virus. Interestingly, the vaccine strain, Edmon-
ston Zagreb (Ed-Zagreb), used as a control, was more
robust than either of the G954 strains, multiplying in dif-
ferent cell types. Surprisingly, despite the differences in
the P/V/C genes and the current belief that viral sensitivity
to and induction of type I IEN correlate with an attenuated
phenotype, this study shows the existence of exceptions to
this dogma where virus attenuation is not linked to o/
IEN system.

Methods

Virus strains and cell lines

The wild-type MV strain, G954-PBL (genotype B3.2), was
isolated in Gambia in 1993 and was propagated on acti-
vated human PBMCs. The Vero adapted strain, G954-V13
was obtained after 13 successive passages of a G954-PBL
sample on Vero cells, [10]. MV vaccine Edmonston-
Zagreb was kindly provided by D. Forcic and R. Mazuran
(Immunology Institute of Zagreb, Croatia). Vesicular sto-
matitis virus (VSV) (Indiana strain) was propagated on
Vero cells.

Measles viruses were titrated on Vero/CD150 cells by the
standard plaque assay method as previously described
[10]. For the establishment of viral kinetics, each time
point was obtained individually. Infections were per-
formed at a MOI of 0,1.

B95a, Vero, and Vero/CD150 cells were propagated in
Dulbecco's modified Eagle's medium (Invitrogen) supple-
mented with 2 mM L-glutamine, 100 U of penicillin/ml,
0.1 mg of streptomycin/ml, 10 mM HEPES, and 10% fetal
calf serum or 2% for infections.

Isolation and infection of human haematopoietic cells

Human PBMCs were prepared from whole blood of
healthy donors (Etablissement Francais du Sang, Lyon,
France) by Ficoll-Hypaque density gradient centrifugation
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(Eurobio, France). pDCs were isolated by magnetic acti-
vated cell sorting (MACS) using the BDCA-4 dendritic cell
isolation kit from Miltenyi Biotec. Prior to positive selec-
tion, monocytes, B cells, T cells, NK cells, red cells and
macrophages were depleted by negative selection. Cells
were incubated with an antibody cocktail directed against
CD3, CD8, CD14, CD16, CD19, CD35, CD56 and glyco-
phorin-A, then with Biomag Goat anti-mouse IgG mag-
netic beads (Quiagen) and finally separated using a
Biomag magnet. PDCs were labeled with anti-BDCA-4
antibody coupled to colloidal paramagnetic micro beads
and passed through a magnetic separation column (LS
column; Miltenyi Biotec). The purity of isolated pDCs
(BDCA2 positive, CD123-positive) was between 75% and
95%. pDCs from individual donors were used separately
in all experiments and were not pooled. Contaminating
cells were mainly monocytes. After isolation, cells were
infected for 2 hours, then supernatants were removed and
cells were cultivated in RPMI supplemented with 10%
FCS at 37°C and 5% CO, with 10 ng/mL of IL-3 for the
pDC (105 cells/mL) and 1 pg/mL PHA, 50 U/mL IL-2 for
the other cells (PBMCs, CD3+CD19+, monocytes ; 10°
cells/mL).

Infection of mice

Heterozygous one-week-old suckling CD150 transgenic
mice [26], backcrossed or not in a type I IEN receptor defi-
cient background [27] and their nontransgenic littermates
were infected intranasally (i.n.) by application in both
nares of 10 pl of MV (103 PFU). Clinical signs of disease
and the weight of the mice were assessed daily for 8 weeks
after infection. Mice were bred at the institute's animal
facility (Plateau de Biologie Experimentale de la Souris,
IFR128 BioSciences Lyon-Gerland, France), and in vivo
protocols were certified by the Comité Rhone-Alpes
d'Ethique pour I'Expérimentation Animale (CREEA).

Determination of MV-specific antibodies in murine serum
by ELISA

Sera were taken from G954-V13 infected mice at 60 days
after infection from the retro-orbital vein or by intra-car-
diac punction and tested for anti-MV antibodies by
enzyme-linked immunosorbent assay (ELISA) as
described previously [26]. The titer of N-specific antibod-
ies in each serum sample was determined using a standard
curve established with sera from mice immunized with
MYV in complete Freund's adjuvant and expressed in rela-
tive units.

Extraction of MV-specific RNA

For quantitative PCR, total RNA was obtained directly
from the supernatant of infected cells or control non-
infected cells, using the Nucleospin RNA Virus kit (Mach-
erey-Nagel, Diiren, Germany), according to the manufac-
turer's protocol. For in vivo experiments, total RNA was
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extracted from murine brains and lungs at 10 days post
infection with RNA-NOW (Biogentex, Ozyme, France)
and treated with DNase I (Sigma).

Detection and quantification of MV-specific RNA
Detection of efficient replication in mice brains (presence
of mRNA coding for N), was performed as previously
described [26]. For determination of viral genome pro-
duction, cDNA was obtained using the Superscript II kit
(Invitrogen) and further diluted to perform quantitative
PCR using a Platinum SYBR Green qPCR super mix uracil
DNA glycosylase kit (Invitrogen). The RT reaction was
specific using the following primer (corresponding to the
N region of the genome): 5'-GACATTGACACTGCATC-3'.
The Quantitative PCR experiments were performed with
this primer as forward and 5'-GATTCCTGCCATGGCTT-
GCAGCC-3' as reverse. QPCR was performed with an ABI
Prism 7000 SDS, and results were analyzed using ABI
Prism 7000 SDS software available from the Genetic Anal-
ysis Platform (IFR128 BioSciences Lyon-Gerland). In
order to normalize the results, the ubiquitin housekeep-
ing gene was quantified [26]. The level of expression of
the gene of interest in an unknown sample was calculated
from the real-time PCR efficiency of primers and the cross-
ing point deviation of the unknown sample versus a
standard, as described previously [28]. Briefly, these
standard references were included in each PCR run for
every analyzed gene in order to standardize the PCR run
with respect to RNA integrity, sample loading, and inter-
PCR variations. The calculated relative expression repre-
sents, therefore, the ratio of the expression level of gene of
interest versus the expression level of the housekeeping
gene. Otherwise, when the level of expression of none of
the housekeeping genes tested was found to be stable,
results were normalized in function of the initial number
of cells.

Nucleic acid sequencing

Experiments were performed as described in Kouomou et
al [10]. Briefly, PCR products were electrophoresed on a
1.2% agarose gel, and then purified using a QIAquick Gel
Extraction kit (Qiagen, Courtaboeuf, France) following
the manufacturer's instructions. Purified PCR products
were sequenced with the ABI prism Big Dye Terminator
Cycle Sequencing Ready Reaction Kit (PE Biosystems,
Langen, Germany). The reaction products were analyzed
in an ABI Prism 3100 automatic sequencer (Perkin Elmer,
Langen, Germany). The MV G954-PBL and G954-V13
sequences were deposited in Genebank under the acces-
sion numbers: EF565854 (N gene), EF565855 (P gene,
G954-PBL), EF565857 (M gene, G954-PBL), EF565859 (L
gene), EF565856 (P gene, G954-V13) and EF565858 (M
gene, G954-V13).
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IFN-cl 5 detection assay

UV-inactivated cell culture supernatants were serially
diluted (2-fold) and added to confluent Vero monolayer
cells. After incubation for 24 h at 37°C, the cells were
infected with VSV at 0.1 PFU/cell. Cytopathic effects were
determined after fixation with formalin and methylene
blue coloration 24 h later. Titration end-point represented
dilutions that gave VSV-induced lysis of 50% of the cells.
IFN titers are expressed as International Units per millili-
ter with reference to a standard IFN curve obtained using
o-IEN (Sigma).

Results

Adaptation of wild type MV to Vero cells induced 5
mutations in the P/V/C and M genes

In a previous study [10], we isolated MV (G954-PBL) from
the lymphocytes of a patient and maintained the isolate
either in PHA-activated human PBMCs or adapted the
virus to Vero cells. During this adaptation to Vero cells, we
reported no changes in the amino acid sequences of the
two viral glycoproteins, H and F [10]. Although the Vero
infected cells expressed large amounts of the two glyco-
proteins at the cell surface, no fusion (syncytia) was
observed. However, infection of Vero cells expressing the
MV receptor CD150 readily induced fusion [10]. Three
additional passages on Vero cells did not modify this viral
phenotype. In order to identify the mutations implicated
in the adaptation of the virus (G954-V13) to Vero cells, we
sequenced the complete genomes of both viruses. There
were a total of 5 nucleotide changes which led to coding
changes. These are shown in table 1 (P, E242V; V, H232D
; C, F93S and V130A ; M, E89K).

The Vero-adapted strain, G954-V 13, is highly attenuated in
vivo

Intranasal infection of CD150 transgenic suckling mice
with the G954-PBL strain leads to MV spread to different
organs and to the development of a lethal neurological
syndrome [26]. To study the pathogenicity of the G954-
V13 Vero-adapted virus, transgenic CD150 suckling mice
were inoculated intranasally with either the wild type
G954-PBL or the adapted G954-V13 virus (table 2).
Whereas the G954-PBL infected mice died within 15 days
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post infection (pi), no deaths were observed for the G954-
V13 infected mice during the period of observation (90
days). Ten days after infection, when a high level of G954-
PBL replication is observed [26], some of the infected
mice were sacrificed and the presence of virus in the differ-
ent organs was studied by RT-PCR. In the case of the
G954-PBL infected mice, the distribution of the virus was
similar to that previously described [26]. In the G954-V13
infected animals, MV was not detected by the technique
used. However, at 60 days pi, the mice exhibited anti MV-
N antibodies in their sera as detected by ELISA. Infection
with UV-inactivated virus did not induce antibody pro-
duction, strongly suggesting that generation of antibodies
requires initial replication of G954-V13 after intranasal
infection of CD150 transgenic mice. Therefore, G954-V13
replicates in this transgenic model without provoking any
pathological effect demonstrating that MV adaptation to
Vero cells is associated with an important loss of viral
pathogenicity in vivo.

Four of the 5 mutations differing G954-PBL and G954-
V13, are located in the P/V and C genes. These proteins are
known to interfere with the production and signaling of
type I IFN, suggesting potential importance of type I IFN
in G954-V13 attenuation. Therefore, we studied the path-
ogenicity of G954 strains in CD150 transgenic mice
crossed into a type I IFN receptor KO background. While
intranasal G954 V13 infection was again not lethal for
transgenic mice, the infection with G954-PBL resulted in
death of all the animals within 11 days (lethal outcome
between day 9 and day 11). The absence of pathogenicity
of G954-V13 in mice lacking type I IFN receptor strongly
suggested that G954 V13 attenuation could be independ-
ent of type I IFN.

Adaptation of MV restricts its replication to specific cell
types

Although the transgenic murine model is a convenient
system to test different aspects of MV infection, it cannot
reflect completely the physiopathology in humans. There-
fore, we further analyzed the properties of G954 viruses in
different primate cell types.

Table I: Summary of nucleotide and deduced amino acid differences between the G954-PBL and G954-V I3 strains.

Nucleotide Amino Acid
Gene Position G954 PBL G954 VI3 Protein Position G954 PBL G954 V13
P/VIC 2106 T C C 93 Phe Ser
2217 T C C 130 Val Ala
2499 C G \'% 232 His Asp
2531 A T P 242 Glu Val
M 3702 G A M 89 Glu Lys
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Table 2: Pathogenicity of G954 MV strains in vivo
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Mice genotype Viral strain Mortality rate (time/days) MV replication anti-N response (15 days
(no. of mice) (10 days pi) (*) pi)(t)
brain lung
C57/BI6 (8) G954 PBL 0%
G954 VI3 0% - - -
CDI150 tg (6-8) G954 PBL 100% (9-15 d) +++ + ++
G954 VI3 0% - - +H++
UV inactivated G954 V13 0% nd nd -
CDI150/IFNARKO (8-10) G954 PBL 100% (9-11 d) nd nd nd
G954 VI3 0% nd nd +H++

(*)determined by RT PCR on N mRNA: +++ > | 0% housekeeping gene expression; + > 0,1 x housekeeping gene expression ; — beyond limit of

detection ; nd not determined

(1) determined by ELISA on N specific sera antibodies: ++ between | and 10 arbitrary units; + between 0,| and | arbitrary units; — beyond 0, |

arbitrary units

The attenuated phenotype of G954-V13 could reflect its
ability to replicate in different tissues. Moreover, the E9K
mutation in the M protein of another wt strain of MV per-
mitted an efficient replication in Vero cells while limiting
the cell/cell fusion process [25]. In order to verify if such
a phenomenon was observed with our strains, we com-
pared the replication of both G954 viruses in several pri-
mate cell types and used the Edmonston Zagreb strain as
a vaccine reference.

PBMCs from healthy donors were infected with either
G954-PBL or G954-V13 or Ed-Zagreb (MOI = 0.1) and the
production of virus monitored daily (figure 1A). G954-
PBL readily infected these cells with a peak of virus pro-
duction on day 4. In contrast, G954-V13 virus poortly rep-
licated: 100 fold less in these cultures than its parental
strain. The Ed-Zagreb vaccine strain replicated almost as
well as the wt strain.

The G954-V13 strain grew well in Vero cells (figure 1B),
multiplying far more efficiently than G954-PBL. However,
we did not observe any difference in syncytia formation
between G954-PBL and G954-V13. The expression of
CD150 on Vero cells did not modify the kinetics of G954-
V13 replication. Similar results were obtained with the Ed-
Zagreb vaccine strain. In the case of the wt strain, the avail-
ability of CD150 enhanced by almost 100 the yield of
infectious virus (figure 1C).

All three viruses efficiently replicated in B95a cells, which
express CD150 but not CD46. G954 V13 yield was 10
times greater than the wt and Ed-Zagreb infections the
first 2 days of infection (figure 1D). Thus, the restriction
of G954 strains to specific cell types did not seem to rely
on known receptor expression.

At day 3 or 4 pi, i.e. when the virus yields were the highest,
we performed RT-QPCR analysis on infected cultures. The

number of MV genomes present in those cultures is
shown in table 3. G954-V13 and Ed-Zagreb infections of
PBMCs were 20 times less productive than infections of
Vero/CD150 cells, while there were 10 fold more
genomes of G954-PBL in infected PBMCs than in the
Vero/CD150 cells.

Thus, viral adaptation to a specific cell type could be
linked to a more efficient production of infectious parti-
cles and a greater accumulation/production of genomes in
cell culture and not necessarily to restrictions at the entry
level.

Sensitivity of MV G954-PBL and G954-V13 to IFN
Previous studies showed that wild type MV strains are
more sensitive than vaccine strains to type I IEN in PBMCs
[11] and that V and C proteins can interfere with type I
IFN signaling [13-16]. Therefore, we studied the sensitiv-
ity of G954 and Ed-Zagreb strains to type I IFN. As PBMCs
are a very heterogeneous cell population, Vero/CD150
cells were also included in the study. These cells have the
added advantage of not synthesizing IFN while being sen-
sitive to its protective effect which means that any effect
can be correlated to exogenously added IFN. Moreover,
we studied the kinetics of infection prior to or following
addition of type I IEN. This enabled us to study both the
inhibition of virus production as well as delay in the
establishment and duration of infection.

Addition of different amounts of type I IFN to Vero/
CD150 cells prior to infection revealed that G954 viruses
were inhibited to similar levels. Treatment of cells 48
hours prior to infection with 100 IU of type I IFN reduced
infectious virus production by both viruses by approxi-
mately 80-90 % and was completely inhibited with 500
IU when assayed 3 days after infection (table 4). Pre-treat-
ment of the cells with type I IFN for shorter periods
revealed similar profiles except that higher concentrations
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Adaptation to a specific cell type limits replication of MV. Replication kinetics of MVs in PBMCs (A), in Vero cells (B),

in Vero/CD50 cells (C), in B95a cells (D). For each experiment, 105 cells were infected at a MOI of 0,1. Each time point con-
sists of the mean of 2 independent experiments. Vero/CD |50 cells were used for the titration.

of IFN were required to inhibit viral infection, suggesting
a threshold effect. Finally, although the Ed-Zagreb infec-

tion was more resistant to a pretreatment of 8 and 24

hours than both G954 viruses, it showed similar resist-
ance at the 48 h point.

Table 3: Number of copies of MV genome in different infected
cell types

PBMCs Vero/CD150 pDCs
G954 PBL 3,3.105% 3,8.104 8.103
G954 VI3 1,6.105 3,2.108 2.7.103
Ed-Zagreb 1,6.10% 3.2.10¢ 8.103
G954 PBL UV <10 <10 <10
G954 VI3 UV <10 <10 <10

* Data represent the number of copies of MV genomes deduced from
RT-QPCR results obtained from infected cultures extractions when

maximum PFU were released (8.104 cells infected at 0,1 PFU/cell).

We next examined the effect of type I IFN during the MV
infection. Different quantities of IFN were added to Vero/
CD150 cells infected with G954-PBL, G954-V13 or Ed-
Zagreb (MOI = 0,1) at 2, 4 or 12 hr post infection (figure
2A-D, G). The later the IFN was added the less effect it had
on the inhibition of infectious virus production. Treat-
ment with more than 1250 IU/mL of IFN 2 h pi blocked
the infection by the wt strain. The infection was delayed
and produced less infectious virus in proportion to the
quantity of IFN added. IFN added 12 h after infection did
not slow down the production of infectious MV. In the
case of G954-V13, the effect of type I IFN was much less
important. The infection was never delayed, slightly ham-
pered and shortened, proportionally to the added dose.
Interestingly, the infection by Ed-Zagreb was far more
robust. Independently of the delay between type I IFN
treatment and infection, there was a slight dose effect (fig-
ure 2G and unpublished results): the vaccine strain infec-
tion of Vero/CD150 cells was less affected by type I IFN.
Thus, it appears that type I IFN-induced protection of
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Table 4: Inhibitory efficacy of a type I IFN pre-treatment on Vero/CD 150 cells before MV infection

Concentration of IFN added (IU/mL)

Time before infection Strain
8h G954-PBL
G954-V13
Ed-Zagreb
24 h G954-PBL
G954-V13
Ed-Zagreb
48 h G954-PBL
G954-V13
Ed-Zagreb

5000 1000 500 100 0
100* 92 95 63 0
100 95 89 56 0
100 79 65 58 0
100 100 100 95 0
100 100 100 67 0
100 100 100 43 0
100 100 100 91 0
100 100 100 80 0
100 100 100 8l 0

* Inhibition indices were calculated as follow: 100 % [I — (PFU(type | IFN = x)/PFU(type | IFN = 0)]

Vero/CD150 cells was less effective in the case of infection
by the Vero adapted strain, G954-V13. This type of resist-
ance could be linked with a better adaptation of MV to the
Vero cell environment.

When the protective effect of type I IFN on MV infection
of PBMCs was studied, the wt strain was not inhibited
despite the addition of high quantities of IFN (up to 5000
IU/mL). On the contrary, infection by G954-V13 strain
was delayed, shortened and of lesser amplitude, propor-
tionally to the IFN concentration and totally blocked with
5000 IU/mL of type I IFN. Finally, there was no effect of
time between infection and IFN treatment on the virus
replication in PBMCs for both analyzed viruses (figure
2E-F and data not shown). Infection of PBMCs by the Ed-
Zagreb virus was unaffected by the different conditions of
type I IEN tested (figure 2H). Thus, G954 strains seemed
to be rather resistant to type I IFN since the protective
effects occurred only when infections were performed on
cells less permissive to a specific strain. However, Ed-
Zagreb exhibited a strong resistance to type I IEN, inde-
pendently of the cell type tested.

Induction of type I IFN by MV infection

Plasmacytoid Dendritic Cells (pDCs) are the main pro-
ducers of type I IFN in blood and lymph nodes. Unstimu-
lated pDCs express CD46 at the cell surface, but not
CD150 [29]. Schlender et al have shown that pDCs are
infectable by the Edmonston-Schwarz vaccine strain of
MV but do not produce IFN during the first 36 hours after
infection [19]. To study the permissivity of these cells to
different MV, pDC cultures were infected for 3 days with
G954-PBL, G954-V13 or Ed-Zagreb. Neither G954 virus
induced syncytia formation in the cultures nor were any
infectious virus particles detectable, whereas infection
with the Ed-Zagreb strain induced cell fusion without
infectious virus production (figure 3A-D ). Quantitative
RT-PCR studies on the infected cells showed that RNA rep-
lication/transcription could occur in pDCs (table 3). The

pDCs infected with the wt strain and Ed-Zagreb contained
3 fold more genomes than those infected with G954-V13.
The presence of MV genomes was not detected after infec-
tion with UV-treated virus (table 3) confirming the active
replication of MV in pDCs.

To study the induction of type I IFN by these viruses,
PBMCs and fractionated preparations (pDCs, CD14+
CD19+, and CD3+ cells) were infected and the produc-
tion of type I IFN measured 3 days later (figure 3E). The
infected pDCs had up to 1,000 fold higher quantities of o/
B IFN than the other cells examined. The wild type G954-
PBL virus induced 10-fold higher type I IFN amounts than
the G954-V13 virus in pDCs and equal amounts as Ed-
Zagreb. In all tested cell types, each MV strain induced
production of type I IFN, although G954-V13 infection
induced lower level, particularly in PBMCs and pDCs.
Altogether, those results demonstrate that the G954-V13
attenuation/adaptation was not linked to an enhanced
production of type I IFN by either of primary humans
haemotopoietic cells analyzed in this study.

Discussion

We have adapted a wild type MV to Vero cells and shown
that the adapted strain and the parent strain differ from
each other by only 5 coding mutations. Although the dif-
ferences we have observed were located in the P/V/C and
M genes, they were different from mutations observed in
previous studies [21-23,30] where viruses were attenuated
by passaging on Vero cells and then tested in a monkey
model. Our MV adapted to Vero cells (G954-V13) was
strongly attenuated when inoculated into CD150 trans-
genic mice. The E89K mutation in M protein has also been
shown to be present in another Vero adapted strain [24]
and was shown to permit the wt strain to replicate in Vero
cells while provoking limited cell/cell fusion of CD150+
cells. Our results support the proposed importance of the
M E89K mutation in replication in Vero cells although we
observed a better cytopathic effect in Vero/CD150 cells
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Viral resistance to type I IFN induced protection depends upon the cell type used for viral adaptation. G954-PBL
infections of Vero/CD 150 cells could be blocked with high doses of type IFN but the efficacy relied on the delay before treat-
ment [(A): 2 hours (C): 12 hours between infection and type | IFN addition]. Infections with G954-V |3 were less affected by
type | IFN [(B): 2 hours (D): 12 hours between infection and type | IFN addition]. Infection of PBMCs by wt MV was not
affected by type | IFN regardless of dose [(E): 2 hours between infection and type | IFN addition]. However, high doses of type
I IFN could inhibit the G954-V I3 strain infection [(F): 2 hours between infection and type | IFN addition]. Ed-Zagreb infections
of both Vero/CD 150 cells [(G): 4 hours between infection and type | IFN addition] and PBMCs [(H): 2 hours between infection
and type | IFN addition] were relatively unaffected by type | IFN. Cells were infected at a MOI of 0,| during 2 hours then
washed. Various dilutions of type | IFN were added to cell cultures at specified times.
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Figure 3

Attenuation of G954 strain is not linked to type IIFN induction. (A-D): Cytopathic effects of MV infection on pDCs.
Cells were infected at a MOI of 0,1. Photographs were taken when the maximum of cytopathic effects was observed (2—4 days
pi). (A): non infected pDCs; (B): Infection by G954 PBL; (C): G954 V13; (D): Edmonston Zagreb strain induces syncytia forma-
tion. Magnification x400. (E): pDCs are the main producers of type | IFN following MV infection. Haematopoietic cells were
infected at a MO of 0,1 with G954 and Ed-Zagreb viruses. Type | IFN amounts were determined by biological assays on UV-
inactivated supernatants harvested 3 days pi.
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rather than defects in syncytia formation [data not shown
and [10]]. A recent study shows that this mutation could
affect MV growth by modifying the interaction between M
and the cytoplasmic tail of the H protein [25]. Since the
predicted domains on H for CD46 and CD150 binding
are close, one could hypothesise that a stronger interac-
tion of M with H could change the conformation of H and
thus change the affinity of the CD46 binding site (R. Buck-
land, personal communication).

Parks et al. sequenced a number of the vaccine strains
derived from the Edmonston isolate and identified amino
acids shared by these attenuated viruses [31]. Eight amino
acid coding changes were common to all vaccine strains
and an additional two were conserved in all except the
Edmonston Zagreb strain. They concluded that modula-
tion of transcription and replication plays an important
role in attenuation. Among the mutations found in G954-
V13, only M E89K corresponds to an amino acid change
observed in the transition toward vaccine strains in this
study. The observation that the Edmonston Zagreb strain
could readily replicate in PBMCs and Vero cells while
resisting to type I IFN induced protection suggests the
robustness of vaccine strains. Furthermore, it questions
the notion of attenuated and vaccine strains since a virus
which does not induce a pathology in humans could still
exhibit strong deleterious effects in human cell cultures,
demonstrating discrepancies of the virus pathogenicity in
vitro and in vivo. Therefore, these observations beg the
question of whether a vaccine phenotype can be predicted
and engineered at the genetic level by using only in vitro
approach.

Innate immunity is an important early response to viral
infection. The accessory proteins of Paramyxoviruses, C
and V, have been shown to be implicated in the suppres-
sion of this response, both in the induction and signalling
of type I IFN [12-17,32]. Although in some of those stud-
ies, laboratory strains were poor inducers of type I IFN
[14], other studies reported that vaccine strains induced
10 to 80 times more type I IFN than wt strains after infec-
tion of peripheral blood lymphocytes [11,33]. In contrast,
in our study, the wild type and attenuated G954-V13
viruses as well as vaccine strain Ed-Zagreb induced similar
quantities of type I [FN in these cells. We showed that fol-
lowing in vitro infection, the major cell population pro-
ducing type I IFN was the pDCs for both the wild type and
the attenuated strain. The inhibition of type I IFN produc-
tion induced by vaccine MV strains observed in another
study [19] was probably due to the shorter observation
period (36 hours) than in our study (72 hours). Neverthe-
less, we cannot exclude potential interference of MV infec-
tion with TLR-induced type I IFN production by pDCs.
Furthermore, it may also be possible that G954 forms part
of a particular group of wt MV, able of good induction of

http://www.virologyj.com/content/5/1/22

type I IFN and then, during its attenuation, this property
is preserved. Even if better induction and higher sensitiv-
ity to type I IFN is an attractive explanation for the mech-
anism of viral attenuation, this study strongly suggests
that it is possible to achieve attenuation without perturb-
ing interactions with the innate immune mechanisms.

Our results show that P/V/C mutations are not necessarily
linked to modifications in type I IEN resistance and sug-
gest rather that they have a role in the replicative process
during infection. This is in agreement with previous stud-
ies on the negative effect of V and C proteins on transcrip-
tion and replication [34-36]. The absence of the V protein
was reported to delay replication [37] and the virus was
less pathogenic in vivo [38,39]. The absence of the C pro-
tein reduced the virus yield both in vitro and in vivo [40].
Even the M protein has been shown to inhibit the replica-
tion process [41]. Recent studies showed that the P pro-
tein is involved in STAT1 phosphorylation [42] and thus
can affect type I IFN efficacy. In our case such a role for P
could not be observed. Moreover, other studies demon-
strated that the adaptation of MV to Vero cells could
induce differences in the amounts of viral proteins pro-
duced [43]. More quantitative experiments should be per-
formed to assess if such a phenomenon is important in
the adaptation of the G954 viral strain. Therefore, it may
be very likely that differences between G954 strains are
linked to P/V/C and/or M proteins via cell specific restric-
tions of viral replication, transcription and translation
processes.

Conclusion

The present study shows that adaptation of wild type MV
to Vero cells induces a strong attenuation in vivo, which is
independent of type I IFN. Identifying the exact role of
each of the 5 mutations will determine their role in path-
ogenicity and could be performed by developing a recom-
binant virus strategy. Further analysis of the mechanisms
implicated in the complex process of virus attenuation
should pave the way towards developing new vaccines
with a high capacity to induce specific host immune
responses.
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