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Abstract

Human cytomegalovirus (HCMV) can be acquired sexually and is shed from the genital tract. Cross-
sectional studies in women show that changes in genital tract microbial flora affect HCMV infection
and/or shedding. Since genital microbial flora may affect HCMV infection or replication by
stimulating cells through Toll-like receptors (TLR), we assessed the effects of defined TLR-ligands
on HCMV replication in foreskin fibroblasts and ectocervical tissue. Poly I:C (a TLR3-ligand) and
lipopolysaccharide (LPS, a TLR4-ligand) inhibited HCMV and induced secretion of IL-8 and
Interferon-beta (IFN) in both foreskin fibroblasts and ectocervical tissue. The anti-HCMV effect
was reversed by antibody to IFNB. CpG (TLR9 ligand) and lipoteichoic acid (LTA, TLR2 ligand) also
inhibited HCMV infection in ectocervical tissue and this anti-HCMV effect was also reversed by
anti-IFNf antibody. In contrast, LTA and CpG did not inhibit HCMV infection in foreskin
fibroblasts. This study shows that TLR ligands induce an HCMV-antiviral effect that is mediated by
IFNP suggesting that changes in genital tract flora may affect HCMV infection or shedding by
stimulating TLR. This study also contrasts the utility of two models that can be used for assessing
the interaction of microbial flora with HCMV in the genital tract. Clear differences in the response
to different TLR ligands suggests the explant model more closely reflects in vivo responses to
genital infections.

Background

The seroprevalence of human cytomegalovirus (HCMV)
in the United States general population is approximately
60% and is even higher in certain socioeconomic groups
[1]. HCMV causes severe disease when immunity is sup-
pressed such as in organ transplant recipients or during
the later stages of HIV-1 infection [2]. HCMV infection
can be transmitted by bodily fluids of infected individu-
als, including saliva, blood, semen and cervical/vaginal
secretions [3]. Infection of infants can occur from expo-

sure to genital fluids during birth and this route of infec-
tion can lead to mild to severe neurological sequelae.

Several studies suggest that alterations of genital tract flora
in women can affect either initial infection by HCMV or
virus replication/shedding. For example, HCMV DNA was
detected more frequently in vaginal washings from
women with bacterial vaginosis (BV) than in women with
normal genital tract flora [4]. BV is an alteration of the
female genital tract flora consisting of an increase in both
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gram negative and gram positive bacteria [5]. Increased
HCMV shedding is also associated with concurrent
Chlamydia trachomatis or Neisseria gonorrhoeae infection
[6]. Further, infection with Trichomonas vaginalis, N. gonor-
rhoeae, and BV are associated with increased intrauterine
transmission of HCMV [7]. The cause of the relationship
between HCMYV, BV and other sexually transmitted infec-
tions (STI) is not currently understood although inflam-
matory changes caused by STI could influence HCMV
infection. Inflammation in genital tract infections is in
many cases caused by the activation of genital tract cells
through Toll-like receptor (TLR)-ligands derived from the
pathogens; N. gonorrhoeae, T. vaginalis and BV flora all
have been found to express products that activate TLR [8-
10].

In contrast to the studies that show enhancement of
HCMYV infection or shedding by genital tract infections,
other studies show that stimulation through TLR can
induce an antiviral state in cells or in animals [11]. For
example, replication of HSV-2 in vaginally-infected mice
was prevented by intra-vaginal application of purified TLR
ligands [12,13]. Similarly, intravenous injection of lig-
ands for TLR3, -4, -5, -7, and -9 inhibit virus replication in
Hepatitis B-transgenic mice [14]. The anti-viral effect in
these studies was mediated by induction of type I interfer-
ons via TLR stimulation [14,15].

In this study, we determined the effect of defined TLR lig-
ands on HCMV replication as a model to better under-
stand how changes in genital tract flora may enhance or
inhibit HCMV replication in vivo. Since there are cur-
rently no animal models that are susceptible to HCMYV,
and only certain human cells are susceptible to HCMV
infection, the effect of TLR ligands on replication of
HCMYV was assessed in foreskin fibroblasts (HFF), a previ-
ously described in vitro model of HCMV infection
[16,17]. The TLR ligand effects were also studied in
ectocervical tissue explants since HCMV was recently
shown to replicate in this tissue and this may represent a
model that more accurately represents in vivo infection by
the virus [18].

Materials and methods

Cells, tissues, & reagents

Human Foreskin Fibroblasts (HFF) were maintained in
culture medium comprised of Minimum Essential
Medium (Gibco, Carlsbad, CA) with 10 mM HEPES, 2
mM L-glutamine, 50 pg/ml gentamycin, 2.5 pg/ml
amphotericin B, and 10% fetal bovine serum (FBS; BioW-
hittaker, Walkersville, MD). Cervical tissue was obtained
at Northwestern University Medical Center from women
undergoing planned hysterectomy for benign disease who
had no history of cervical dysplasia. Patient consent was
obtained by the treating physicians.
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An HCMV dlinical strain was engineered to express the
Renilla green fluorescent protein under the control of the
HCMYV major immediate early promoter [19]. The recom-
binant strain, HCMVPT30-gfp, produces extracellular
virus and has similar growth kinetics as the parental strain
[18].

Purified lipoteichoic acid (LTA) from S. aureus and
lipopolysaccharide (LPS) from E. coli O11:B4 were
obtained from Sigma Aldrich (St. Louis, MO). Poly I:C
(PIC) was obtained from Amersham (Piscataway, NJ).
CpG 2395, atype C oligodeoxynucleotide, was generously
contributed by Coley Pharmaceuticals (Wellesley, MA).

Treatment and infection of HFF

HFF were grown to 95% confluency in 24-well culture
plates and treated with either medium alone or TLR lig-
ands. After 24 h, medium was removed and assayed for
cytokines. Cells were washed and CMVPT30-gfp was
added (moi = 0.05). Cells were cultured for four hours,
the virus inoculum was removed, and cells were cultured
an additional 10 days. Monolayers were inspected by epi-
fluorescent microscopy and the number of GFP-positive
cells or clusters of cells (foci) was determined.

Cytokine ELISA

IL-8, IL-10, IL-12, and TNF-a were quantitated in cell cul-
ture fluids using CytoSet ELISA kits from Biosource
(Carlsbad, California). IFN-o was tested using the IFN-a
Module Set from Bender Medsystems (Burlingame, CA).
IFN-B was assayed by coating 96-well flat bottom plates
(NUNC, Rochester, NY) with 3 pg/ml monoclonal mouse
anti-human IFN-B(Chemicon, Temecula, CA). Wells were
blocked with 1% bovine serum albumin in phosphate
buffered saline for 2 h at 25°C, washed three times and
samples added and incubated for 1 h at 25°C. After wash-
ing, 3.5 pg/ml polyclonal rabbit anti-human IFN
(Chemicon) was incubated in wells for one hour at 25°C
followed by a 1/10,000 dilution of mouse anti-rabbit cou-
pled to horseradish peroxidase (Chemicon) for 1 h at
25°C.

IFN-/ neutralization

HFF were grown to 95% confluency in 24-well culture
plates and treated with either medium alone, Poly I:C (10
pg/ml) or LPS (10 pg/ml) for 24 h. Cells were washed
twice with medium and incubated at 37°Cin 1 ml of fresh
medium for 1 h to maximize removal of residual stimuli.
Medium was replaced with 1 ml of complete medium and
cells were cultured for an additional 24 hour period. Con-
ditioned supernatants were collected and incubated with
either complete medium, rabbit polyclonal anti-IFN-$
neutralizing antiserum (Chemicon) (final concentration
of 2 x 10% neutralization units/ml), or normal rabbit
serum (NRS) (diluted 1:500 to give the same concentra-
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tion of rabbit antibody) for 1 h at 37°C. The treated super-
natants were then transferred to fresh 24-well culture
plates containing confluent naive HFF, and cultured for
24 hours. Conditioned medium was then removed and
HFF challenged with CMVPT30-gfp. Fluorescent cells
were counted by microscopy on day 10 after infection.

Treatment and infection of ectocervical tissue

Cervical tissues were washed extensively, cut into pieces of
approximately 3 mm3, and cultured in 48 well plates sim-
ilar to a previously described method [20] except that
three ectocervical tissue pieces were cultured in each well
of 48 well plates [18]. Tissues were cultured in 0.5 ml
medium containing Dulbeco's Modified Essential
Medium, 24% Ham's nutrient mixture, 5 pg/ml insulin,
50 pg/ml gentamicin, 100 U penicillin/100 pg/ml strepto-
mycin, 20 mM HEPES, 2 mM L-glutamine, 1 mm sodium
pyruvate, and 10% FBS. TLR ligands were added to wells
and cultured for 24 hours. Culture supernatants were
removed and assayed for cytokines. Tissue pieces were
washed and infected with HCMV (105 pfu per well) for
four h at 37°C. Tissue pieces were washed again and then
cultured for 10 days.

PCR quantitation of HCMYV infection

Ectocervical explant tissue samples that were infected with
HCMYV were harvested and weighed. DNA was extracted
using the Qiamp DNA Mini kit (Qiagen, Valencia, CA)
and assayed by real-time PCR using primers for the DNA
Polymerase gene of HCMV [18]. The forward primer used
was 5'-CTCGTGCGTGTGCTACGAGA-3' and the reverse
primer used was 5'-GCCGATCGTRAAGAGATGAAGAC-
3. A FAM-AGTGCAGCCCCGRCCATCGITC-TAMRA
probe was used for detection of amplified product and a
standard curve was generated using known copy numbers
of genomic DNA from HCMV strain AD169 (Advanced
Biotechnologies Inc.,, Columbia, MD). Results were
expressed as HCMV copies/mg tissue.

Expression of TLR by HFF and ectocervical explant tissue
HFF, tissue, HEK293 were lysed and RNA extracted using
the RNeasy Mini Kit (Qiagen, Stanford Valencia, CA).
c¢DNA was made from 1 pg RNA from each cell type using
the RT-PCR Kit from Clontech (Palo Alto, CA). The TLR
primers were designed using Clone Manager Primer Soft-
ware (4 Sci-ed, Durham, NC) based on gene sequences
obtained from GeneBank (National Center of Biotechnol-
ogy Information, NIH, Bethesda, MD). The primers were;
TLR2 (F 5-CTCCAATCAGGCITCICT-3, R 5-TCAG-
TATCTCGCAGTTCC-3); TLR3 (F 5-GCATTCGGAATCT-
GTCTCTG-3, R 5-ATTCCTGGCCTGTGAGTTCT-3); TLR4
(F 5-GATGCCAGGATGATGTCT-3, R 5-CCGCAAGTCT-
GTGCAATA-3); TLRY (F 5-TACCTTGCCTGCCITCCTAC-
3, R 5-CAACACCAGGCCITCAAGAC-3); and GAPDH (F
5-GAAGGTGAAGGTCGGAGTC-3, R 5-GAAGATGGT-
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GATGGGATITC-3). Amplification was carried out using a
GeneAMP Thermocycler (Perkin Elmer, Norwalk, CT)
with a thermocycler profile as follows; Stage 1, 94°C (5
min); stage 2, 35 cycles of 94°C (45 sec), 62°C (45 sec)
and 72°C (1 min) and Stage 3, 72°C (10 min).

Results

TLR3 and TLR4 ligands but not TLR2 or TLR9Y ligands
induce IL-8 secretion in foreskin fibroblasts

Initial experiments were performed to determine if lig-
ands for TLR2 (LTA), TLR3 (Polyl:C), TLR4 (LPS), or TLR9
(CpG 2395, a type C oligonucleotide) stimulate human
foreskin fibroblasts (HFF) by measuring IL-8 secretion
since IL-8 is secreted by a wide variety of cell types in
response to stimulation by TLR ligands [21]. HFF secreted
IL-8 in response to stimulation with Poly I:C and LPS in a
dose dependent fashion (Fig. 1A). In contrast, HFF did not
secrete significant levels of IL-8 in response to stimulation
with LTA or CpG 2395 (Fig. 1A). Since TLR ligands can
induce the secretion of other cytokines in some types of
cells, we also assayed HFF supernatants for IL-12 p40, IL-
10, TNF-a, and interferon-a.. None of these cytokines were
detected after stimulation of HFF with LTA, CpG 2395,
LPS, or Poly I:C (data not shown).

TLR3 and TLR4 ligands inhibit HCMYV infection in HFF
After stimulation with TLR ligands, HFF were washed and
infected with CMVPT30-gfp. After culture, the number of
infected cells was determined by quantifying GFP-express-
ing cells (Fig. 1B). Treatment of HFF with LPS at doses as
low as 0.1 pg/ml resulted in a 92% reduction in the
number of GFP-positive cells (Fig. 1C). Treatment with
0.1 pg/ml Poly I:C resulted in a 63% reduction in the
number of infected cells, while at doses of 1 pg/ml and 10
pg/ml of Poly I:C, >97% reduction in the number of
infected cells was observed (Fig. 1C). In contrast, pre-
treating HFF with LTA at doses as high as 100 pg/ml or 10
pg/ml CpG did not significantly inhibit infection. Thus,
pre-treatment of HFF with TLR3 and TLR4 ligands, but not
TLR2 or TLRY ligands, inhibited HCMV infection.

Time dependence of TLR stimulation for HCMYV inhibition
and IL-8 production

The effect of timing of TLR-ligand exposure on inhibition
of HCMV infection production was next investigated
using the concentration of each TLR-ligand that most
effectively inhibited infection in the above experiments.
When HFF were exposed to TLR ligands for 2 hours, 72%
inhibition of GFP-positive cells was observed in response
to Poly I:C, while only 9% inhibition was observed in
response to LPS (Fig. 2A). However, both Poly I:C and LPS
induced >98% inhibition of HCMV infection when
present for 24 hours in cell culture. Anti-HCMYV responses
induced by Poly I:C and LPS were similar whether cells
were exposed to TLR ligands for 24 hours, 48 hours or
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IL-8 secretion and HCMYV inhibition in HFF induced by TLR ligands. HFF cells were cultured to 95% confluency and
stimulated with the indicated doses of TLR ligands or medium control alone (C) for 24 hours. A. Culture supernatants were
then collected and assayed for IL-8 by ELISA. IL-8 secretion from one experiment representative of three. Bars represent mean
x SD of triplicate cultures. B and C. After treatment of HFF with medium alone, LTA, Poly I:C, LPS, or CpG 2395 for 24 hours,
cells were washed and CMVPT30-gfp was added. After four hours, the virus innoculum was removed and replaced with fresh
culture medium. HCMYV infection was quantified on day 10 post-infection by counting fluorescent (GFP expressing) cells in
each well. B. Shown is a representative culture well from cells treated with medium alone. C. Percent inhibition compared to
medium control. Results of one experiment, representative of 3 independent experiments, is shown. Bars represent mean *
SD of triplicate cultures. * indicates P < 0.05 compared to control. ** indicates P < 0.0 compared to control. *** indicates P <

0.001 compared to control.

when stimulated for 24 hours and then incubated in the
absence of stimulus for 24 hours before infection (Fig.
2A). When CpG was present for 2 hours, a significant 23%
inhibition (p < 0.05) of HCMV replication was noted.
However, CpG did not significantly inhibit HCMV when
present for 24, 48 hours or 24 hours followed by resting
for 24 hours. LTA did not inhibit HCMV at any of the
times (not shown). These results show that 24 hours of
exposure to Poly I:C and LPS resulted in a maximal anti-
HCMV effect.

The effect of time of cell stimulation with TLR ligands on
IL-8 production was also determined. Stimulation of HFF
cells with Poly I:C for 2 hours did not induce significant
secretion of IL-8 above control, although IL-8 was
detected after 2 hours exposure to LPS (Fig. 2B). The
amount of IL-8 detected after 24 hours of stimulation was
higher than after 2 hours for both Poly I:C and LPS (Fig.
2B). The amount of IL-8 detected after stimulation with
Poly I:C and LPS for 48 hours was similar to 24 hour stim-
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The effect of time of TLR stimulation on HCMYV infection and IL-8 secretion in Foreskin Fibroblasts. A. Cell
monlayers were treated with medium alone, Poly I:C, LPS or CpG 2395 (all at 10 pg/ml) for either 2 hours, 24 hours, 48 hours,
or for 24 hours followed by a period of 24 hours with fresh complete medium (24/24 group) and then challenged with
CMVPT30-gfp. At day 10 post-infection the number of gfp-expressing foci were determined by fluorescence microscopy and
the percent inhibition was calculated based on medium control-treated cells. B. Cells were stimulated with medium alone (con-
trol, C) or the indicated dose of the TLR ligands for a period of 2 hours, 24 hours, 48 hours, or for 24 hours followed by a
period of 24 hours with fresh complete medium (24/24 group). Culture supernatants were immediately harvested and IL-8 lev-
els determined by ELISA. For both A and B bars represent mean + SD of triplicate cultures. * indicates P < 0.05 compared to

control. ** indicates P < 0.001 compared to control.

ulation. There was no IL-8 produced by HFF in response
to CpG or LTA (data not shown).

Anti-HCMYV effect of TLR3 and TLR4 ligands in HFF is
mediated by IFNS

Since fibroblasts are known to produce interferon-beta
(IFNB) in response to stimulation with LPS and Poly I.C
[22,23], we hypothesized that the anti-HCMV effects
resulting from stimulation of HFF with TLR ligands were
mediated by IFNP. To determine if IFNf was present, HFF
were stimulated with LTA, Poly I:C, LPS, or CpG 2395 for
24 hours and the level of IFNB was measured in culture
supernatants by ELISA. Poly I:C at 10 pg/ml induced

detectable IFNP, while LPS induced detectable levels of
IFN-B at 1 pg/ml and 10 pg/ml (Fig. 3). In contrast, LTA
and CpG did not induce detectable IFN-B(data not
shown).

We next determined if IFN produced by HFF in response
to Poly I:C or LPS was responsible for mediating anti-
HCMV effects. HFF were stimulated with Poly I:C or LPS
for 24 hours, washed, and cultured an additional 24 hours
to produce conditioned medium. Conditioned medium
was treated with rabbit polyclonal anti-IFNJ antiserum or
control antiserum and added to fresh HFF prior to HCMV
infection. In the absence of IFNf neutralizing antibody,

Page 5 of 10

(page number not for citation purposes)



Virology Journal 2007, 4:133

9000+
8000+ *
7000+
6000+
5000+
4000+
3000+
2000+
1000

IFN-beta (pg/ml)

O

0.1 1 10 0.1 1 10

Poly I:C LPS
TLR Ligand (ng/ml)

Figure 3

Poly 1:C and LPS induce IFNp secretion by Foreskin
Fibroblasts. Monolayers of foreskin fibroblasts were stimu-
lated with the indicated doses of TLR ligands or medium
alone (Control, C) for 24 hours. Culture supernatants were
collected and tested for IFNJ by ELISA. The limit of detec-
tion of this assay was 1000 pg/ml. * indicates P < 0.05 com-
pared to control. ** indicates P < 0.0] compared to control.
** indicates P < 0.001 compared to control.
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Poly I:C-conditioned medium inhibited HCMV replica-
tion by 73% and LPS-conditioned medium inhibited
HCMV replication by 84% (Fig 4). Addition of anti-IFNf
antibody reduced the ability of Poly I:C and LPS condi-
tioned medium to inhibit HCMYV, resulting in only 8%
and 20% inhibition, respectively (Figure 4). In contrast,
normal rabbit serum did not decrease the inhibition of
HCMV infection of Poly I:C- and LPS-conditioned
medium (Figure 4). These results show that stimulation
with TLR3 and TLR4 ligands induced secretion of IFNf
that inhibited HCMV infection of HFF.

TLR3, TLR4, and TLR9Y ligands induce IL-8 secretion in
ectocervical explant tissue

The ability of TLR ligands to stimulate cells within ectocer-
vical explant tissue was investigated by measuring IL-8 in
culture supernatants. Poly I:C significantly induced IL-8 at
1 and 10 pg/ml (p < 0.001) (Fig 5A). LPS induced detect-
able IL-8 at all concentrations, although at lower levels
than Poly I:C. In contrast to HFF, ectocervical explant tis-
sues secreted IL-8 in response to CpG at 1 and 10 pg/ml.
LTA did not induce IL-8.

TLR2, TLR3, TLR4, and TLR9 ligands inhibit HCMV
infection in ectocervical explant tissue

The ability of TLR ligands to inhibit HCMV infection was
next evaluated by real-time PCR for HCMV DNA instead
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Figure 4

IFNB induced by Poly I:C and LPS mediates resistance to HCMYV in HFF. Monolayers of HFF were treated with
either medium alone, Poly I:C (10 pg/ml) or LPS (10 pg/ml) for 24 hours. Cells were washed three times and cultured for an
additional 24 period in one ml of fresh medium. These conditioned supernatants were collected and incubated in the presence
of either medium as a control, rabbit polyclonal anti-IFNf antibody, or normal rabbit serum for | hour at 37°C. Recombinant
IFNB (IFN) was also incubated in the presence of either medium as a control, rabbit polyclonal anti-IFNf antibody, or normal
rabbit serum for | hour at 37°C. The treated supernatants were then transferred to wells of confluent HFF fibroblasts and cul-
tured for 24 hours. The conditioned medium was removed and the fresh HFF were challenged with CMVPT30-gfp. Fluorescent
cells were then counted on day |0 post-infection (Pl). The data shown is representative of 3 independent experiments. ***

indicates P < 0.001 compared to control.
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of counting fluorescent cells since GFP-positive cells were
observed, but difficult to accurately count in the three-
dimensional tissue matrix. Ectocervical explant tissue was
incubated with Poly I:C, LPS, CpG, or LTA for 24 hours
prior to infection and tissues were harvested 12 days after
infection to determine HCMV DNA levels. Previous stud-
ies indicated that this time point was near the peak of
HCMV levels [18]. Both Poly I:C and LPS significantly
inhibited HCMV infection at 1 pg/ml and 10 pug/ml (Fig.
5B). However, LPS also inhibited HCMV infection at 0.1
pg/ml (Fig 5). CpG inhibited HCMV infection signifi-
cantly at 10 pg/ml (p < 0.0001). Surprisingly, LTA inhib-
ited HCMV infection significantly at 100 pg/ml (p <
0.001).

IL-8 (pg/m)

€011 1001110011 10 1 10100
Poly LC LPS CpG LTA

% Inhibition CMV

0.1 1
Poly IC LPS CpG LTA

1001 1 1001 1 10 1 10100

Figure 5

TLR Ligands induce IL-8 secretion and inhibit HCMV
infection in Ectocervical explant tissue. A. Ectocervial
explant tissue was incubated with TLR ligands for 24 hours.
Supernatants were removed and assayed for IL-8 by ELISA.
The mean % SD of triplicate cultures is shown from one
experiment that is representative of three separate experi-
ments. B. Ectocervical explant tissue was incubated with TLR
ligands for 24 hours. Tissues were infected with HCMV and
levels of HCMV were assessed by real time PCR after 12
days of culture. Average of three experiments. * indicates P <
0.05 compared to control. ** indicates P < 0.0] compared to
control while ** indicates P < 0.001.
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IFN-£ mediates anti-HCMYV effect of TLR-ligands in
ectocervical explant tissue

We next determined whether IFNf was involved in the
anti-HCMV effect of the TLR ligands in ectocervical
explant tissue. Conditioned medium was collected after
24 hours of stimulation of ectocervical explant tissue with
Poly I:C, LPS, CpG, or LTA. Poly I:C conditioned medium
inhibited HCMYV infection by 61% and the inhibition was
completely reversed by the presence of anti-IFNf anti-
body but not control serum (Fig. 6). Although LPS did not
induce IL-8 as potently as Poly I:C in ectocervical tissues,
LPS conditioned medium inhibited HCMV infection by
91%, and the inhibition was reversed by neutralization of
IFNp (Fig. 6). CpG conditioned medium also significantly
inhibited HCMV infection (71%) and inhibition was
shown to be dependent on the presence of IFNf (Fig 6).
Although LTA did not induce significant levels of IL-8 in
ectocervical tissue, conditioned medium from LTA-treated
ectocervical tissues inhibited HCMV infection by 56% and
this was reversed by anti-IFNf. These results demonstrate
that IFNB contributes to the anti-HCMV effect of TLR2,
TLR3, TLR4, and TLRY ligands in ectocervical tissues. No
interferon-o. was detected in supernatants of TLR-stimu-
lated cultures by ELISA (not shown).

Expression of TLR by HFF and ectocervical tissue

An anti-HCMYV response was observed by ectocervical tis-
sue in response to all TLR ligands but in HFF only in
response to TLR3 and TLR4 ligands. These findings sug-
gested that ectocervical tissue and HFF differentially
expressed TLR. To determine expression of TLR, mRNA
from HFF and ectocervical tissue was isolated, reverse
transcribed, subjected to PCR and the products visualized
on gels. The THP-1 cell line was similarly analyzed since
these cells are know to express multiple TLR [24]. Bands
were observed after amplification of ectocervical tissue
c¢DNA and THP-1 cells cDNA for all four TLR (Fig. 7). In
contrast, for HFF, bands were observed only for TLR3 and
TLR4 suggesting a lack of expression of TLR2 and TLR9 by
these cells.

Discussion

Sexually transmitted microbial diseases or bacterial vagi-
nosis expose genital tract cells to TLR ligands. In this study
we performed experiments to determine if exposure to
defined TLR ligands affects HCMV infection and found
that TLR ligands inhibit HCMV infection of both HFF and
ectocervical explant tissue through induction of IFN.
While no previous studies directly investigated the effect
of TLR ligand stimulation of cells in vitro on HCMV infec-
tion, Sainz et al [25] showed that the pretreatment of HFF
with either IFN-a, IFN, or IFN-y inhibited HCMYV infec-
tion. Several previous studies showed induction of IFNf
in HFF, HEK fibroblasts, and human lung fibroblasts in
response to stimulation with Poly I:C [26-28].
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IFNB induced in Ectocervical tissue by TLR ligands mediates resistance to HCMV. Ectocervical tissue was treated
for 24 hours with TLR ligands. Tissues were washed three times and cultured for an additional 24 period in one ml of fresh
medium. These conditioned supernatants were collected and incubated in the presence of either medium as a control, rabbit
polyclonal anti-IFNB antibody, or normal rabbit serum for | hour at 37°C. The treated supernatants were then transferred to
wells of confluent HFF and cultured for 24 hours. The conditioned medium was removed and treated HFF were challenged
with CMVPT30-gfp. Foci of infection containing gfp-expressing cells were then counted on day 10 post-infection. The data
shown is the mean + SD from one experiment that is representative of 3 independent experiments. ** indicates P < 0.0l com-

pared to control. *** indicates P < 0.00] compared to control.

While the effect of genital microbial infections on initial
HCMYV infection of women has not been reported, Ross et
al. [4] recently reported that HCMV shedding was found

NoDNA THP-1  HFF Tissue

TLR 2
TLR3
TLR4

TLR9

GAPDH

il

Figure 7

Expression of TLR by HFF and Ectocervical tissue.
Expression of TLR2, TLR3, TLR4 and TLR9 in cells and tissue
was assessed by reverse-transcription PCR. mRNA was iso-
lated from THP-1 monocytic cells, HFF and tissue and
reverse transcribed to create cDNA which was subjected to
PCR using primers for each of the TLR as well as for
GAPDH.

at a higher rate in women with BV than in women with
normal flora. Infection with T. vaginalis, gonorrhea, and
BV were independently associated with intrauterine trans-
mission of HCMV [7]. Thus, these clinical studies show
that under some in vivo conditions, HCMV infection can
be enhanced by infections with other infectious agents.
This suggests that TLR ligands may enhance HCMV infec-
tion in vivo since GC, T. vaginalis and BV all have TLR lig-
ands (TLR2, TLR4 and TLR2 respectively) associated with
their infections [8-10]. The clinical studies contrast with
the findings of our in vitro and ex vivo studies where inhi-
bition by defined TLR ligands was observed. A possible
explanation for the differences could be that many of the
clinical infections are chronic infections that in vitro 24
and 48 hour treatments with TLR ligands fail to accurately
model. Also, in vivo adaptive immune responses or other
stimuli may be present that affect HCMV that are lacking
in vitro. Further studies are needed to understand these
apparent differences.

A recent study showed that during infection with murine
CMYV, virus replicates to higher levels in mice lacking TLR2
[29]. Depletion of Natural Killer (NK) cells eliminated the
difference between TLR2-positive and TLR2-negative mice
suggesting NK cells were involved in virus suppression in
TLR2-positive mice. Also, type 1 interferon was lower in
the TLR2 negative mice suggesting a role in virus suppres-
sion. The CMV inhibition in mice is different than the in

Page 8 of 10

(page number not for citation purposes)



Virology Journal 2007, 4:133

vitro HCMV inhibition described in our study since in the
mice no exogenous TLR ligands were given before infec-
tion. Intact HCMYV virions have been reported to activate
TLR2, possibly via glycoproteins B and H [30,31],
although murine CMV is not known to have this activity.
Iverson et al. [32] showed that human NK cells can sup-
press HCMYV through secretion of IFN(, and NK cells can
be stimulated through certain TLR including TLR2 [33]. In
our in vitro studies, no NK cells were present in HFF cul-
tures showing that TLR3- and TLR4-ligands had a direct
effect on the HCMV infection targets. However, in ectocer-
vical tissue, it is possible that targets of HCMV infection as
well as non-targets, such as immune cells, could have pro-
duced interferons. In mice, murine HCMV replicates to
higher levels in mice deficient in TLR9 or MyD88 [34,35].
This higher replication is again associated with lower lev-
els of type 1 IFN and decreased NK cell activity. However,
mouse embryonic fibroblasts, dendritic cells and macro-
phges, and human fibroblasts have all been shown to
secrete IFNP in response to stimulation with LPS [22,36-
38]. Thus, it is likely that multiple cell types in ectocervical
tissues secrete IFNP and contribute to the anti-HCMV
effect.

Another interesting observation made in the current study
was that the response pattern to the TLR ligands was dif-
ferent between HFF and ectocervical explants. Anti-HCMV
responses in HFF were only found with TLR4 and TLR3
ligands while significant HCMV inhibition was induced
by ligands to TLR2, TLR3, TLR4 and TLR9 in ectocervical
explants. In our studies, IL-8 was measured to determine
the responsiveness of HFF and explants to the TLR ligands.
The IL-8 response pattern to the TLR ligands was also dif-
ferent between HFF and ectocervical explants with only
TLR3 and TLR4 ligands inducing IL-8 in HFF but TLR3,
TLR4 and TLRY ligands inducing IL-8 in the tissue. Analy-
sis of mRNA indicated that the ectocervical tissue
expressed all four of the TLR while HFF only expressed
TLR3 and TLR4. Many cell types express restricted reper-
toires of TLR receptors. For example, many epithelial cells
have been observed to lack expression of TLR4 but to
respond to TLR2 ligands [39]. This highlights the impor-
tance of using models to study HCMYV infection that most
closely mirror the types of cells that are present in vivo.
Cultures of ectocervical tissue have been used to study fac-
tors that affect HIV-infection [20] and to assess the inter-
actions of HIV with HCMV [18], but this is the first study
to investigate how TLR ligands affect HCMV infection in
this tissue.

The inability of a TLRY ligand to inhibit HCMV in HFF
may be due to a lack of expression of TLR9 in these cells.
TLR2 is not generally recognized to activate signaling
pathways that lead to IFN production and may explain the
lack of anti-HCMV effect in HFF due to this TLR ligand

http://www.virologyj.com/content/4/1/133

[40]. However, TLR2 induced an anti-HCMV effect in
ectocervical tissue and this appeared to be dependent on
IFN. The mechanism for induction of IEN by TLR2 in
tissues is not known although as mentioned above, some
cells may produce IFN in response to TLR2 ligands. Also,
stimulation through TLR2 can upregulate a number of
molecules involved in anti-viral responses such as TRIF
[41] possibly leading to enhanced IFN production by cells
due to other stimuli.

In conclusion this study shows that defined TLR ligands
inhibit HCMV replication via IFNP which suggests that
different types of flora in the female genital tract can influ-
ence HCMV infection. This further suggests that reactiva-
tion and shedding of HCMV in the genital tract may be
determined by alterations in the normal flora, which
results from underlying conditions such as bacterial vagi-
nosis or sexually transmitted diseases.
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