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Abstract

Background: Integrase inhibitors (INI) form a new drug class in the treatment of HIV-1 patients. We developed a
linear regression modeling approach to make a quantitative raltegravir (RAL) resistance phenotype prediction, as
Fold Change in IC50 against a wild type virus, from mutations in the integrase genotype.

Methods: We developed a clonal genotype-phenotype database with 991 clones from 153 clinical isolates of INI
naïve and RAL treated patients, and 28 site-directed mutants.
We did the development of the RAL linear regression model in two stages, employing a genetic algorithm (GA) to
select integrase mutations by consensus. First, we ran multiple GAs to generate first order linear regression models
(GA models) that were stochastically optimized to reach a goal R2 accuracy, and consisted of a fixed-length subset
of integrase mutations to estimate INI resistance. Secondly, we derived a consensus linear regression model in a
forward stepwise regression procedure, considering integrase mutations or mutation pairs by descending
prevalence in the GA models.

Results: The most frequently occurring mutations in the GA models were 92Q, 97A, 143R and 155H (all 100%),
143G (90%), 148H/R (89%), 148K (88%), 151I (81%), 121Y (75%), 143C (72%), and 74M (69%). The RAL second order
model contained 30 single mutations and five mutation pairs (p < 0.01): 143C/R&97A, 155H&97A/151I and
74M&151I. The R2 performance of this model on the clonal training data was 0.97, and 0.78 on an unseen
population genotype-phenotype dataset of 171 clinical isolates from RAL treated and INI naïve patients.

Conclusions: We describe a systematic approach to derive a model for predicting INI resistance from a limited
amount of clonal samples. Our RAL second order model is made available as an Additional file for calculating a
resistance phenotype as the sum of integrase mutations and mutation pairs.
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Background
Recently, new drugs have been developed for the treat-
ment of HIV-1 patients that act at different steps in the
viral replication cycle [1,2]. Integrase inhibitors (INIs)
target HIV-1 integrase, an enzyme which mediates the
integration of HIV-1 viral DNA into the host genome
[3,4]. Raltegravir is the first INI approved by the FDA,
for use in treatment-naïve and treatment-experienced
patients [5,6]. Elvitegravir and S/GSK1349572 are two
other INIs in advanced clinical development [7].
* Correspondence: kvdborgh@its.jnj.com
Tibotec-Virco, Beerse, Belgium

© 2013 Van der Borght et al.; licensee BioMed
Creative Commons Attribution License (http:/
distribution, and reproduction in any medium
Notwithstanding the success of antiretroviral treat-
ment of HIV-1 infection, viral replication cannot always
be completely inhibited and this results in the emer-
gence of drug resistance. In clinical practice, resistance
testing has proven to be beneficial in designing potent
combination regimens. Genotypic tests are preferred to
phenotypic tests because of lower cost and faster turn-
around time. However, phenotypic tests can provide use-
ful additional information, especially for more complex
mutational patterns [8,9]. In this respect, linear regres-
sion is successfully applied as a diagnostic service for
clinicians, by modeling drug susceptibility as a function
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of the mutations in the patients viral genome regions
that encode for the enzymes HIV-1 protease and reverse
transcriptase [10].
In this article, we describe our approach to also generate

linear regression models to predict INI resistance from
mutations in the integrase (IN) genetic region [11,12]. We
show how we applied the methodology for raltegravir
(RAL) in deriving a first and second order model on an in-
house developed clonal genotype-phenotype database. We
report on the performance of both RAL models on four dif-
ferent datasets available for analysis: the two datasets that
we used during model development – the clonal database
(training set), and an external set of site-directed mutants
that we used for evaluation of mutation pairs for our
second order model (validation set) – and two population
datasets of clinical isolates: the dataset with samples from
which we derived the clones (seen data), and an indepen-
dent test set (unseen data).
Our results indicated that RAL resistance could be

accurately predicted using linear regression modeling.

Methods
Clonal INI genotype-phenotype database construction
We derived the Virco clonal INI genotype-phenotype data-
base from 153 clinical isolates, originating from INI naïve
and RAL treated patients, including 106 HIV-1 infected
patients previously described [13]. Plasma samples were
collected before and/or during RAL treatment.
The production of the population recombinant viruses

was done as previously described [13]. Briefly, RNA is
extracted from plasma and the IN gene is amplified. The
replication-competent recombinant virus stocks were pro-
duced via homologous recombination in MT4 cells. The
purified IN amplicons were recombined within the cells
with the pHXB2-ΔIN backbone by Amaxa nucleofection.
The cell cultures were microscopically monitored for the
appearance of cytopathic effect during the course of infec-
tion. When full cytopathic effect was reached, the superna-
tants containing the recombinant viruses were harvested by
centrifugation. For the production of the clonal recombi-
nant viruses, the purified IN amplicons were cloned into
the backbone pHXB2-DIN-eGFP using the Clontech In-
Fusion technology, following the manufacturer’s protocol.
The recombinant plasmids were transformed into Max Effi-
ciency Stbl2 cells (Invitrogen) using the manufacturer’s pro-
cedure. Individual clones were randomly picked and
cultured to prepare full-length vector HIV-1 genome DNA
using the QiaPrep Spin Miniprep system (Qiagen).
Replication-competent recombinant virus stocks were gen-
erated by nucleofection of full-length HIV-genome plas-
mids into MT4 cells (Amaxa Biosystems, Cologne,
Germany). The cell cultures were microscopically moni-
tored for the appearance of cytopathic effect during the
course of infection. When full cytopathic effect was
reached, the supernatants containing the recombinant
viruses were harvested by centrifugation.
The recombinant viruses were titrated and subjected

to an antiviral experiment in MT4-LTR-eGFP cells as
previously described [13]. Fold change (FC) values were
calculated, using the HIV-1 wild-type strain IIIB as a
reference.
Sequence analysis was also done as previously

described [13]. Genotypes were defined as a list of IN
mutations compared to the HIV-1 wild-type strain
HXB2.
In total, our INI genotype-phenotype clonal database

consisted for RAL of 991 clonal viruses: 899 clones
derived from 153 clinical isolates (93.7% clade B, 6.3%
clade non-B), 4 pHXB2D clones and 88 clones derived
from 28 site-directed mutants, with a minimum of 2
clones per site-directed mutant. The site-directed
mutants incorporated in the clonal database were the
ones described in [13]: 66A, 66I, 92Q, 143R, 147G,
148R, 155H, 92Q + 147G, 92Q + 155H, 140S + 148H and
72I + 92Q + 157Q. In addition, site-directed mutants
were constructed for IN mutations with score > 0 for
RAL/elvitegravir(EVG) in the Stanford algorithm 6.0.11
(http://hivdb.stanford.edu) and either absent in patient
derived clones: 66K, 92V, 114Y, 121Y, 125K, 128T, 140C,
143H, 145S, 146P, 151A, 153Y, 155S and 263K or under-
represented: 51Y (1 clone) and 143C (11 clones). Mu-
tation 72A was not found in any of the patient derived
clones and it does not appear in the Stanford database
of INI resistance mutations (http://hivdb.stanford.edu/
DR/INIResiNote.html). Therefore a site-directed mutant,
which had been previously created and in vitro had FCs of
1.71 and 4.85 for RAL and EVG, respectively was included
in our database. By picking on average 6 clones for each of
the 153 clinical isolates and including site-directed mutants,
the IN database consisted of 433 unique clonal genotypes.
We calculated a biological cutoff for RAL [14] for the

clonal database as the 97.5 percentile of the log FC phe-
notypes of patient-derived clonal viruses not containing
any of the mutations listed in the RAL product label
[15]: 74M, 92Q, 97A, 138A/K, 140A/S, 143C/H/R,
148H/K/R, 151I, 155H, 163R, 183P, 226C/D/F/H, 230R
and 232N, and/or not containing mutations with score >
0 for RAL/EVG in the Stanford algorithm 6.0.11. Before
calculating the biological cutoff, we removed outliers
(log FC >mean log FC + 3 standard deviations).

Consensus linear regression modeling for INI
To perform linear regression on our clonal genotype-
phenotype database, we first encoded the clonal genotypes
as 0/1 (absence/presence) for all IN mutations present at
least once in the database.
We then used a two-stage genetic algorithm (GA) con-

sensus approach to derive a linear regression model for
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calculating INI resistance (log FC) as the sum of IN
mutations or mutation pairs. In stage 1, we ran multiple
GA searches to find first order regression models with
R2 ≥ goal R2 (GA solutions). In stage 2, we used a step-
wise regression procedure to generate a first order/second
order consensus model by considering IN mutations or
mutation pairs for entry by descending prevalence in these
GA solutions.
Stage 1: Run multiple GAs to select and rank IN
mutations
In concept, a GA [16,17] is a computational search proce-
dure where a randomly initialized set (population) of
encoded genotypes (chromosomes) is evolved over several
generations by optimization of the quality (fitness) of the
chromosomes, and applying genetic operators (mutation and
crossover). The GA search is successful once a chromosome
with fitness ≥ goal fitness (GA solution) is found.
In our application, in search for an INI resistance linear

regression model with R2 ≥ goal R2, a chromosome was a
fixed-length subset of IN mutations. The fitness of a
chromosome was evaluated by calculating the R2 of the li-
near model. The implementation of the genetic operators
was as follows. The mutation genetic operator randomly
replaced an IN mutation used as linear model parameter
by another IN mutation. The crossover genetic operator
randomly combined two chromosomes present within the
population. In generating a new population, the principle
of natural selection applied: IN mutations present in chro-
mosomes that were more fit (higher R2) had more chance
to be selected in a chromosome in the next generation. To
avoid overfitting, we chose the different GA parameter
settings such that a chromosome reached the goal fitness
within a limited number of generations. As we ran mul-
tiple GAs, we could make a ranking of IN mutations based
on their prevalence (high to low) in the different GA
solutions.
For RAL, we performed multiple GA runs until 100

solutions were obtained for making a GA ranking. The
GAs were run using the R package GALGO [18] with
the following settings: population size = 20, chromosome
size = 30, maximum number of generations = 500, goal
fitness = 0.95, mutation probability = 0.05 and crossover
probability = 0.70.
Stage 2: Run stepwise regression to derive a GA
consensus first order/second order model
We derived a consensus first order linear regression model
by means of forward stepwise regression, considering IN
mutations in order of the GA ranking, and using Schwarz
Bayesian Criterion (SBC) for selection. The stepwise pro-
cedure ended when SBC reached a minimum [19]. In build-
ing the RAL consensus first order linear regression model,
we considered mutations that were consistently selected
(> 10% prevalence in the GA solutions).
To account for synergistic and antagonistic effects be-

tween mutations, we allowed mutation pairs (second
order interaction terms) of which both mutations in the
pair were present in more than T% of the GA models
for entry in the model. A threshold of T = 100% corre-
sponded with a first order linear regression model, while
lowering T allowed for more interaction terms. For RAL,
we chose the threshold T to maximize the R2 perfor-
mance on a public geno/pheno set of 67 IN site-directed
mutants, available from Stanford (http://hivdb.stanford.
edu/cgi-bin/IN_Phenotype.cgi), contributed by the fol-
lowing sources: [20] (11 isolates), [21] (14 isolates), [22]
(18 isolates), [23] (10 isolates) and [24] (14 isolates). Phe-
notyping of the isolates in this external geno/pheno set
had been done with the PhenoSense assay (Monogram,
South San Francisco), providing for validation of the in-
house Virco assay. In the stepwise selection procedure,
we kept IN mutations as first order terms in the model
when also present in a mutation pair.

Performance evaluation of RAL linear regression model
We analyzed the R2 performance on the clonal database
(training set), on the external geno/pheno set (validation set
(see previous section)), on the population genotype-
phenotype data of the clinical isolates that were used for
the clonal database (population seen data), and on popula-
tion genotype-phenotype data of 171 clinical isolates from
RAL treated and INI naïve patients, that were not used for
the clonal database (population unseen data). This unseen
test set contained clonal genotypes from the three resis-
tance pathways: 143, 148, and 155. We analyzed the per-
formance on population data (seen/unseen) separately for
clinical isolates with/without mixtures that contain one or
more mutations from the second or first order linear
regression model (a mixture is defined as an ambiguous
sequencing result at a given amino acid position). To
predict the phenotype for isolates containing mixtures, we
used equal frequencies for all variants [10]. We also calcu-
lated the R2 performance on the clinical isolates with mix-
tures after removal of outlying samples (having a
studentized residual larger than 2 in absolute value). To
compare the performance of first and second order models,
we used the Hotelling-Williams test [25].
We also used the exact binomial test to calculate the

95% confidence interval for the true mixture frequencies
from the observed variant frequencies in the clones. We
used these mixture frequencies to predict the phenotype
for the population seen dataset. In case of more than
one mixture in a genotype, we calculated a predicted
phenotype for all combinations of lower and upper
bounds for the different mixtures. We then plotted the
bars of the resulting lowest and highest predicted value.
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In the population unseen dataset, we evaluated the
linear model biological cutoff call (Susceptible (≤ bio-
logical cutoff ) or Resistant (> biological cutoff )) ver-
sus three public genotypic algorithms: Stanford 6.0.11,
Rega v8.0.2 (http://regaweb.med.kuleuven.be/) and
ANRS May 2011 (http://www.hivfrenchresistance.org).

Results
IN clonal genotype/phenotype database
The IN clonal database consisted of 991 clones with
genotype and phenotype in log FC for RAL. The distri-
bution of these phenotypes is shown in Figure 1. The
biological cutoff for RAL FC was calculated to be 2.0.
The calculation was done on 317 clonal viruses with
‘susceptible’ genotypic profile and non-outlying pheno-
type. This biological cutoff is in agreement with earlier
values calculated from INI naïve patient samples [26,27].
The following site-directed mutants that were included
in the clonal database had a mean FC above the bio-
logical cutoff for RAL: 66K, 72I + 92Q + 157Q, 92Q +
147G, 92Q + 155H, 121Y, 140S + 148H, 143C, 143R,
148R, 155H and 155S (Figure 2).

RAL linear regression model developed on clonal
database
The methodology to develop an INI regression model
was tested for RAL. In generation 264, the average fit-
ness of the 100 GA models reached the goal fitness:
100
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Figure 1 Phenotype distribution within the INI clonal genotype-phen
isolates and site-directed mutants. RAL biological cutoff was 0.30 log FC or
classified as (S)usceptible, whereas 59.0% of the clones were found above t
for high FCs.
R2 of 0.95. GA runs where the goal fitness was not
reached with less than 500 generations (9.1%) were
discarded. As a result of stage 1, fifty mutations out
of 322 IN mutations were retained with prevalence
above 10% in the GA models (Figure 3). In stage 2, a
first order and a second order RAL linear regression
model were generated, having 27 IN mutations in
common, among which the following primary and se-
condary RAL product label resistance associated mu-
tations: 143C/R, 148H/K/R and 155H (primary), and
74M, 92Q, 97A, 140A/S, 151I and 230R (secondary).
IN mutations present in more than 65 (threshold T) of the
100 GA models were considered for mutation pairs in the
second order linear regression model. Five mutation pairs
resulted from the stepwise regression procedure: 4 consist-
ing of a primary mutation and a secondary mutation:
143C/R & 97A and 155H & 97A/151I. One mutation pair
selected for the model consisted of two secondary
mutations: 74M & 151I (Figure 3). We analyzed the fre-
quencies of occurrence of the linear model mutations oc-
curring in first and/or second order linear regression model
in the Stanford database for 4240 clinical isolates of
INI-naïve (2274 clade B, 1966 clade non-B) and 183 clinical
isolates of RAL-treated patients (178 clade B, 5 clade
non-B) (http://hivdb.stanford.edu/cgi-bin/II_Form.cgi) (see
Additional file 1). R2 performances of the RAL linear model
on the training data were 0.96 and 0.97 in first and se-
cond order, respectively. On the validation dataset the R2
= 585 (59.0%)
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performance was 0.79 and 0.80 in first and second order,
respectively (Table 1). Table 1 also contains the perfor-
mance on population data, further described in the next
sections.
The R2 performance on the validation data improved

from 0.80 to 0.91 for the RAL second order linear model
after removal of three outliers: 148K + 140S, 66I + 92Q
and 143C + 97A (Figure 4). The first and second outlier
mutation combination were not present in the clonal
database. For the third outlier four clones, derived from
one patient, were present.

Performance of RAL linear regression model on
population data (seen)
The frequencies of the linear model mutations in the
patient-derived clonal genotypes and in the population ge-
notypes for the same patients were largely similar (Figure 5).
However, IN mutation 143C was less frequently observed
in clones than in the population genotypes, and we made a
site-directed mutant for this mutation (Figure 2). The fol-
lowing linear model mutations were not found in any of
the patients and appeared in the model as a result of the
included site-directed mutants: 66K, 121Y and 155S
(Figures 2, 3, 5). The R2 performance of the first order and
second order linear model on the population genotypes
with measured phenotype was 0.90 (Table 1). The R2

performance was analyzed separately for samples with/
without mixtures containing linear model mutations. The
percentage of samples without mixtures, as detected by
population sequencing, was 72.9%. Clonal genotypes were
more diverse for the group of clinical isolates with one or
more mixtures containing linear model mutations in their
population genotype (Table 2). The R2 performance on
samples without mixtures was 0.95 in first and second
order. The R2 performance on the samples with mixtures
was 0.73 and 0.71 in first and second order, respectively
and increased to 0.84 and 0.81 after removal of outliers
(Table 1 and Figure 6). Although the evaluation with error
bars shows that the range of the predicted phenotype due
to mixtures containing linear model mutations can be wide,
averaging for mixtures resulted overall in a good correlation
with the measured phenotype (Figure 6B).

Performance of RAL linear regression model on
population data (unseen)
On the unseen data the R2 performance was 0.76 and 0.78
for the first and second order model, respectively (Table 1,
Figure 7A). Eighty-nine percent of the unseen population
genotypes had no mixtures containing linear model muta-
tions and had an R2 performance of 0.79 and 0.81 in first
and second order, respectively. Using the online prediction
tool geno2pheno integrase 2.0 (http://integrase.bioinf.mpi-
inf.mpg.de/index.php), the R2 performance was 0.75 and
0.76 on the unseen data and the unseen data without mix-
tures, respectively. Using the RAL biological cutoff, a resis-
tance call was made for all of the unseen samples. A

http://integrase.bioinf.mpi-inf.mpg.de/index.php
http://integrase.bioinf.mpi-inf.mpg.de/index.php
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Table 1 Performance of RAL first/second order linear model

Correlation with measured phenotype (R2) FIRST vs. SECOND order
(p-value)N FIRST order SECOND order

train ALL 991 0.96 0.97 0.0019

validation ALL 67 0.79 0.80 0.3753

population seen ALL 144a 0.90 0.90 0.1530

NOMIX 105 0.95 0.95 0.3558

MIX > = 1 39 0.73 0.71 0.0373

MIX > = 1
(no outliers)

36 0.84 0.81 0.0063

population unseen ALL 171 0.76 0.78 0.0992

NOMIX 153 0.79 0.81 0.1358

MIX > = 1 18 0.59 0.58 0.7482

MIX > = 1
(no outliers)

16 0.78 0.78 0.8819

aFor 144 out of 153 samples a matched genotype-phenotype was available.
Performance in R2 of first order and second order linear model on the clonal geno/pheno training database, on the externally PhenoSense measured IN site-
directed mutants (validation) and on population data, seen and unseen. After Bonferroni correction for multiple testing no significant differences in R2

performance are seen between the first and second order model on the validation dataset or population seen/unseen datasets (p-values listed are unadjusted).
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Table 2 Diversity of clonal genotypes derived from clinical isolates

Group (#mixtures in
population genotype)

#clinical
isolates

Average #clones/
clinical isolate

Average #unique clonal genotypes/
clinical isolate

Percentage of unique clonal
genotypes

0 mixtures 105 5.8 2.4 42.0%

1 mixture 26 5.8 3.8 64.9%

≥ 2 mixtures 13 7.0 4.5 64.8%
Population data seen (144 genotypes, with matched phenotype) divided in groups depending on the number of mixtures containing linear model mutations.

Van der Borght et al. Virology Journal 2013, 10:8 Page 8 of 12
http://www.virologyj.com/content/10/1/8
resistant (R) and susceptible (S) call was given to the sam-
ples with linear model prediction above and less or equal
than the biological cutoff, respectively. For the samples with
a concordant call between ANRS, Rega and Stanford (93%
of the samples, Figures 7B and 7C), the first and second
order linear model call were in agreement, with exception
of one sample (A91A/T, I135V) called resistant by the first
order linear model. The remaining 7% of samples with dis-
cordance between the genotypic algorithms are given in
Figure 7D and Table 3. One third of these discordances
contained the IN mutation 157Q, called resistant by ANRS
algorithm but susceptible by the first and second order li-
near model, Stanford and Rega algorithms. Two samples
(L74M, V151A/V; T97A) were found to be susceptible by
the second order model, but resistant by the first order
model. To be precise, the sample T97A had a second order
model predicted FC of 2.0, equaling the RAL biological cut-
off value. Samples containing the secondary mutations
74M and 97A, were also called intermediate resistant (I) by
the Rega algorithm. Other discordances found were related
to the IN mutations 121Y (called resistant by the RAL
1000 A
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p
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Figure 6 Performance of RAL linear regression model on population
without mixtures was 0.95. (B) Scatterplot of measured FC vs. predicted FC
are drawn to indicate the uncertainty of the second order linear model pre
outliers identified, each containing a mixture at a primary mutation in the
particular primary mutation was: 0% (0/5, 148R), 50% (1/2, 143R) and 100%
linear model) and 138K (called susceptible by the RAL li-
near model).

Discussion
We developed a methodology for predicting INI suscep-
tibility, applying linear regression on a clonal genotype-
phenotype database. Our modeling approach differs
from most of the other genotypic INI resistance inter-
pretation systems by providing a quantitative FC predic-
tion. A particular advantage of our model is that
predictions can be directly interpreted as a weighted
sum of mutations and interaction pairs. We have made
our RAL second order linear regression model available
as PDF fillable form in Additional file 2 such that it can
be used for rapid prediction of RAL susceptibility.
Previously, we described a computationally feasible

technique for developing parsimonious linear regression
models on large genotype-phenotype datasets for the
identification of novel HIV-1 drug resistance associated
mutations [28]. In this article, as the number of patients
failing INI treatment was limited, our primary objective
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was to develop a methodology for training a linear
regression model on a relatively small dataset. We
increased the quality of the correlative genotype-
phenotype data by taking multiple clones for each of the
clinical isolates [26], allowing to more accurately model
the resistance contribution of IN mutations or mutation
pairs. Moreover, to avoid overfitting, we generated an
INI model by consensus linear regression modeling,
using a GA for selection of IN mutations [29,30]. Mul-
tiple clones taken from the same patient largely con-
firmed the independence of the RAL resistance
pathways 143, 148 and 155 [24,31,32]. For one patient,
previously described in [33], four clones were picked
containing both 143C and 155H. Mutation 143C was
found to have a low prevalence in the clonal database. In
[34] a transition from 143C to 143R was suggested, and
in our RAL linear model 143R had a larger contribution
towards resistance than 143C. 143G was another
resistance associated variant at position 143 selected for
our linear model, and has been described in [35,36].
Obviously, our approach is still limited to detecting re-
sistance associated mutations or combinations of muta-
tions with presence in the training dataset. This was in
part overcome by inclusion of site-directed mutants in
the analysis, which we consider valuable in improving
the generalizability of the model.
We evaluated the performance of the RAL linear

model on an unseen population dataset. For RAL, the
additive first order model had an overall equal perfor-
mance to the second order model, which accounted for
synergism or antagonism. However, for an individual
sample (T97A) with secondary mutation 97A, found in
absence of a primary mutation, a discordance was seen
between the first and second order linear models. It was
scored resistant by the first order model and susceptible
by the second order model when using a biological



Table 3 Samples in the unseen population dataset with discordant call between the genotypic algorithms

Genotypic algorithms Linear models

ANRS (May 2011) Rega v8.0.2 Stanford 6.0.11 First order Second order

Samplea mutations call mutations call mutations call mutations BCO
call

mutations BCO
call

L74ILM 72I, 74M S 74M, 156N I 74M S 74M S 74M S

L74M, A91 T, T97A/T,
F121Y

72I, 74M, 97A,
121Y

R 74M, 97A,
206S

I 74M, 97A,
121Y

I 74M, 91T, 97A, 119R,
121Y

R 74M, 91 T, 97A, 119R,
121Y

R

L74M, K103R, I135V,
I200L

72I, 74M S 74M I 74M S 74M, 135V, 200L R 74M, 103R R

L74M, V151A/V 72I, 74M S 74M I 74M, 151A S 74M, 135V, 200L R 74M, 103R S

A91 T, F121Y 72I, 121Y R 206S S 121Y I 91 T, 119R, 121Y R 91T, 119R, 121Y R

T97A 72I, 97A S 97A, 206S I 97A S 25E, 97A R 25E, 97A S

E138E/K 72I S 138K, 206S S 138K I 135V S - S

E138E/K - S 138K S 138K I 25E S 25E S

E157Q 72I, 157Q R 156N S 157Q S - S - S

E157Q 72I, 157Q R 206S S 157Q S 135V S - S

E157Q 157Q R - S 157Q S - S - S

E157Q 157Q R 156 N, 206S S 157Q S - S - S
aHXB2 reference amino acid is shown.
The mutations on which the RAL S(usceptible)/I(ntermediate)/R(esistant) call is based, are listed. For the linear models, the call is R(esistant) if FC prediction is
above the RAL biological cutoff (BCO = 2.0).
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cutoff of 2. In two other samples (T97A/T, Y143R;
E92E/Q, T97A/T, N155H) where primary mutations
143R or 155H occurred together with 97A (in mixture
with wild type), the increased resistance conferred by
the combinations 143C/R & 97A [37] or 155H & 97A,
was in the second order model accounted for by inter-
action terms. Because the second order model explicitly
includes combination effects, we consider it more useful
than the first order model. All interaction terms in the
second order model were found to be synergistic. A high
concordance in RAL resistance call was seen between
the linear model and the publically available genotypic
algorithms: Stanford, Rega and ANRS. However, major
discordances were observed for samples without a pri-
mary mutation and containing mutation 157Q or 121Y.
For the discordance involving 157Q, already discussed in
[38], four clinical isolates (E157Q) from different
patients were called Susceptible by the linear model,
Stanford and Rega, but Resistant by ANRS. For the dis-
cordance involving 121Y, one clinical isolate (A91T,
F121Y) was called Resistant by the linear model and
ANRS, Intermediate resistant by Stanford, but Suscep-
tible by Rega. According to [11], the in vivo selection of
121Y has not yet been reported. In the current study,
one patient was found in the unseen dataset, who had
indeed developed the 121Y mutation. However, as 121Y
was not observed in any of the patient derived clones for
training of the linear model, we had made seven site-
directed mutant clones for the clonal genotype-
phenotype database, confirming the in vitro effect of
121Y [7] on RAL resistance. As a result, 121Y could be
and was selected for the linear model, and contributed
to the FC prediction of the two clinical isolates from the
aforementioned patient. Note that in the genotype of
these isolates also the rare mutation 91T was found, a
mutation that has not been associated with RAL resis-
tance, but contributed to resistance in the RAL linear
model. From the unseen data, it seems as if 91T may be
a background mutation that is currently overweighted in
the linear model. However, more samples are needed to
be conclusive about 91T.
Other rare mutations in the RAL linear model that

needed to be inspected more carefully were 72L and
84L, as they are currently undescribed and contributed
to resistance in the second and first order model, re-
spectively. Remarkably, 72L and 84L co-occurred in the
clonal genotypes of nine clinical isolates derived from a
single patient (only 72L appeared in another clinical iso-
late, by itself ). In the clones of this patient the secondary
mutations 74M, 92Q and 151I were also found, in ab-
sence of any primary mutations, and the measured RAL
FCs were above the biological cutoff (42.9–77.4). Thus,
although 72L and/or 84L are potential RAL resistance
associated mutations, it may be possible that resistance
for this patient is explained by a more complex synergis-
tic interaction between 74M, 92Q and 151I. Note that
mutation pair 74M & 151I had been selected for the
RAL second order linear model, which already indicates
that INI resistance can be developed between interacting
secondary mutations, in absence of a primary mutation.
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Moreover, interactions between mutations are expected
to become more important in elucidating genotype-INI
susceptibility phenotype relationships once several INIs
will be co-administered.
When comparing the R2 performance of the RAL li-

near model on population data, unseen vs. seen, a lower
R2 performance on unseen data was observed. This dif-
ference in performance was acceptable as in the unseen
dataset there were more clinical isolates that did not
contain any of the primary RAL resistance mutations in
their genotype (82.5% vs. 45.0%), and the measurement
error of the phenotypic assay was relatively larger for
low FC values.
In the described approach, ordinary least squares regres-

sion (OLS) was used without taking into account the cor-
relation between genotypes-phenotypes of clones from the
same clinical isolate or site-directed mutant. One way to ac-
count for such correlation would be to replace OLS by a
linear mixed model with as fixed effects the linear model
mutations and mutation pairs as in the RAL second order
linear model (Figure 3), and with the clinical isolate/site-
directed mutant as random factor. The predictive perfor-
mance of the resulting model in terms of R2 changed from
0.80 to 0.82 and from 0.78 to 0.79, on the external vali-
dation set, and population unseen dataset, respectively.
Such a minor change was not unexpected since OLS pa-
rameter estimates are known to be unbiased, even when
the correlation structure is neglected [39]. Nevertheless, for
future work it could be beneficial in using a mixed model
instead of OLS for the GA models to improve the selection
of the mutations and mutation pairs.
In conclusion, RAL resistance could be estimated using

linear regression modeling and produced results that were
generally consistent with those observed for samples ana-
lyzed by Stanford, Rega and ANRS algorithms or the online
prediction tool geno2pheno. The quality of the INI suscep-
tibility models is improved by developing the models on a
clonal genotype-phenotype database and using a GA con-
sensus approach. A quantitative linear model predicted
phenotype is interpretable and informative about the effect
of combinations of mutations on INI resistance. The linear
regression modeling approach allows generating reliable
models for INIs once viral isolates have been obtained du-
ring or after selective pressure of these INIs, even for rela-
tively small numbers of patients.
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