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Abstract 

Background Avian influenza (AI) is a disease caused by the avian influenza virus (AIV). These viruses spread naturally 
among wild aquatic birds worldwide and infect domestic poultry, other birds, and other animal species. Currently, 
real-time reverse transcription polymerase chain reaction (rRT-PCR) is mainly used to detect the presence of patho-
gens and has good sensitivity and specificity. However, the diagnosis requires sophisticated instruments under labo-
ratory conditions, which significantly limits point-of-care testing (POCT). Rapid, reliable, non-lab-equipment-reliant, 
sensitive, and specific diagnostic tests are urgently needed for rapid clinical detection and diagnosis. Our study aimed 
to develop a reverse transcription recombinase polymerase amplification (RT-RPA)/CRISPR method which improves 
on these limitations.

Methods The Cas12a protein was purified by affinity chromatography with Ni-agarose resin and observed using 
sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE). Specific CRISPR RNA (crRNA) and prim-
ers targeting the M and NP genes of the AIV were designed and screened. By combining RT-RPA with the Cas12a/
crRNA trans-cleavage system, a detection system that uses fluorescence readouts under blue light or lateral flow 
strips was established. Sensitivity assays were performed using a tenfold dilution series of plasmids and RNA of the M 
and NP genes as templates. The specificity of this method was determined using H1–H16 subtype AIVs and other 
avian pathogens, such as newcastle disease virus (NDV), infectious bursal disease virus (IBDV), and infectious bronchi-
tis virus (IBV).

Results The results showed that the method was able to detect AIV and that the detection limit can reach 6.7 copies/
μL and 12 copies/μL for the M and NP gene, respectively. In addition, this assay showed no cross-reactivity with other 
avian-derived RNA viruses such as NDV, IBDV, and IBV. Moreover, the detection system presented 97.5% consist-
ency and agreement with rRT-PCR and virus isolation for detecting samples from poultry. This portable and accurate 
method has great potential for AIV detection in the field.

Conclusion An RT-RPA/CRISPR method was developed for rapid, sensitive detection of AIV. The new system presents 
a good potential as an accurate, user-friendly, and inexpensive platform for point-of-care testing applications.
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Background
Avian influenza (AI) is a syndrome caused by avian influ-
enza viruses (AIVs) that infect poultry and wild birds. 
According to different clinical symptoms, AI can be 
divided into low-pathogenic avian influenza (LPAI) and 
highly pathogenic avian influenza (HPAI). AIV is an 
enveloped, segmented, single-stranded, negative-sense 
RNA virus belonging to the family Orthomyxoviridae 
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and the genus Influenza virus A [1, 2]. According to the 
surface glycoproteins, hemagglutinin (HA) and neu-
raminidase (NA), AIVs can be classified into 16 HA and 
9 NA subtypes [3, 4]. Perroncito first reported HPAI or 
fowl plague in 1878; since then, there have been several 
outbreaks worldwide, posing a great threat to the breed-
ing industry and human health [5]. Since 2005, more 
than 25,000 HPAI outbreaks have occurred worldwide 
(https:// www. woah. org/ en/). Wild birds, particularly 
waterfowl, are natural reservoirs of all AIV subtypes, 
making it difficult to control the transmission of AIV [6].

Currently, the main methods commonly used for AIV 
detection include hemagglutination assay, hemaggluti-
nation inhibition [7], reverse transcription polymerase 
chain reaction (RT-PCR), and enzyme-linked immuno-
sorbent assay (ELISA) [8]. Existing nucleic acid detec-
tion methods, such as rRT-PCR, have good sensitivity 
and specificity but require expensive laboratory instru-
ments and well-trained personnel, which greatly hinders 
the application of this method for point-of-care testing 
(POCT).

Recently, clustered regularly interspaced short pal-
indromic repeat sequences and associated nuclease 
(CRISPR-Cas) systems have provided potential appli-
cations for rapid and sensitive molecular diagnostics 

[9–11]. The CRISPR-Cas system is an RNA-guided adap-
tive immune system that protects bacteria and archaea 
from invasion by foreign nucleic acids [12–14]. Some Cas 
nucleases, such as Cas12a, Cas12b, Cas13a, Cas13b, and 
Cas14, exert their collateral cleavage activity after recog-
nizing specific target sequences for nucleic acid detection 
for diagnostic purposes [15, 16]. For example, when the 
Cas12a nuclease recognizes a T-rich protospacer-adja-
cent motif and cleaves double-stranded DNA (dsDNA) 
specifically at the target site guided by sequence-spe-
cific crRNA, the activated Cas nuclease indiscriminately 
cleaves nearby single-stranded DNA (ssDNA) labeled 
with quenched fluorescence or biotin. The results are dis-
played by fluorescent readers or lateral flow chromatog-
raphy test strips (Fig. 1) [17, 18]. Nucleic acid detection 
technology based on the CRISPR-Cas system has been 
successfully applied to several highly pathogenic viruses, 
such as the zika virus, dengue virus, severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2) [19], human 
papillomavirus, and AIV [9, 20, 21]. However, because 
Cas12a itself is not theoretically sensitive enough to 
detect lower levels of nucleic acids, the detection of 
CRISPR-Cas12a is usually combined with an isothermal 
amplification step such as RPA to improve its sensitiv-
ity [22, 23]. RPA is considered one of the nucleic acid 

Fig. 1 Schematic diagram of the RT/RPA assay coupled with the CRISPR-mediated detection platform for identification of AIV. Target genes are 
specifically amplified by RT-RPA from genomic fragments isolated from clinical samples. A specific crRNA is designed to recognize the target 
gene and form a complex with Cas12a and the probe. Once the target DNA is recognized by the Cas12a and crRNA complex, Cas12a exerts 
its non-specific endonuclease activity and cleaves the single-stranded DNA probe. By introducing a ssDNA probe that labels the fluorophore 
and quencher or fluorophore and biotin, the cleavage could be observed using a fluorophore reader or lateral flow dipstick

https://www.woah.org/en/
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amplification techniques used for molecular diagnostics, 
with the ability to amplify nucleic acids at the 37–42 °C 
temperature range for sensitive and rapid nucleic acid 
amplification [24]. Existing studies have confirmed that 
the Cas12a nuclease combined with the RPA method 
shows single-molecule sensitivity in a given reaction [9, 
15].

In this study, a visual detection method using CRISPR-
Cas12a for rapid nucleic acid detection of AIV was devel-
oped. After sample processing, by combining RT-RPA 
technology with the CRISPR-Cas12a system for detec-
tion, the sample can be presented in 1 h by a fluorescence 
reader or the naked eye. Because no sophisticated labo-
ratory instrumentation is required, this method is use-
ful for POCT of AIV and helps control the spread of the 
disease.

Materials and methods
Materials
Escherichia coli strains expressing the LbCas12a pro-
tein, plasmids containing the AIV M and NP genes, 
and H1–H16 subtypes of AIV, newcastle disease virus 
(NDV), infectious bursal disease virus (IBDV), and infec-
tious bronchitis virus (IBV) were conserved in the State 
Key Laboratory of Harbin Veterinary Research Insti-
tute (HVRI), Chinese Academy of Agricultural Sciences 
(CAAS). A total of 81 samples were obtained from the 
National Reference Laboratory for Avian Influenza.

Reagents and instruments
RNase inhibitors were obtained from Thermo Fisher 
Scientific. The crRNA targeting the RT-RPA of the M 
and NP genes was synthesized by RuiBiotech. RNA was 
extracted using a TIANamp Virus RNA Kit. A HiScribe 
T7 Quick High-Yield RNA Synthesis Kit was purchased 
from New England Biolabs. The single-stranded DNA 
reporter was synthesized by Sangon Biotech. The Hybri-
Detect test dipstick was purchased from Warbio. The 
RNA Rapid Concentration Purification Kit was pur-
chased from Sangon Biotech. Fluorescence signals were 
acquired using QuantStudio 5 (Applied Biosystems) and 
the degraded fluorescent reporter group (ssDNA-FQ) 
was visualized under UV light.

Template RNA preparation
Plasmids containing the M and NP genes from AIV were 
PCR-amplified using primers containing T7 promoter 
sequences and then purified using a PCR Product Puri-
fication Kit. The purified DNA products were used as 
templates for in  vitro transcription reactions using the 
HiScribe T7 Quick High Yield RNA Synthesis Kit, and 
RNA was purified using the RNA Rapid Concentration 
Purification Kit.

Protein expression and purification
LbCas12a protein used for AIV detection was expressed 
in E. coli. The gene encoding LbCas12a was cloned into 
a pET-based expression vector containing a C-terminal 
6 × His-tag and a TEV protease cleavage site. The solu-
ble protein was purified as previously described with 
the following modifications: the bacterial expression 
plasmid was transformed into  RosettaTM2(DE3) cells, 
and a 10 mL bacterial culture was grown in 1 L Luria–
Bertani growth media which was inoculated for growth 
at 37 °C and 200 RPM until an  OD600 of 0.6. Meanwhile, 
LbCas12a protein expression was induced by supple-
mentation with isopropyl β-d-1-thiogalactopyranoside 
to a final concentration of 0.5  mM, and the cell was 
cooled to 16 °C for 18 h. Bacterial cells were harvested, 
resuspended in lysis buffer (50 mM HEPES pH 7.2, 2 M 
NaCl, 20 mM imidazole, 2 mL PMSF, and 0.25 mg/mL 
lysozyme), disrupted by sonication, and purified using 
an Ni–NTA column. The purified protein was added to 
TEV enzyme to remove the His-tag and concentrated 
through an ultrafiltration tube to obtain the purified 
LbCas12a protein, which was stored at -80  °C or used 
directly in the assay.

Optimization of RT‑RPA and Cas12a detection
RNase H is an endonuclease that specifically hydro-
lyzes RNA strands in RNA-cDNA hybrids. In RT-RPA, 
viral RNA is reverse transcribed into cDNA or cDNA-
RNA hybrids using reverse transcriptase, which helps to 
improve amplification efficiency [25]. To obtain the best 
amplification, different concentrations of RNase H were 
added to the RT-RPA reaction, and the amplification 
products were detected for Cas12a by reading the fluo-
rescence signal to determine the optimal concentration.

To establish the optimal reaction conditions for Cas12a 
detection, the influence of different factors, includ-
ing pH, ssDNA reporter, buffer composition,  Mg2+, and 
crRNA concentration, on Cas12a cleavage efficiency was 
investigated.

Design and screening for crRNA and primers of RT‑RPA
Based on the conserved sequences of the M and NP 
genes of AIV, four M-crRNAs and four NP-crRNAs were 
designed and screened for the best crRNA. Based on the 
selected crRNA, RT-RPA primers targeting the M and NP 
genes of AIV were designed as described for Twist-Dx 
(Maidenhead, United Kingdom). To screen the best pairs, 
a random combination of primers was used to screen the 
primer pairs with the most efficient amplification effects, 
as shown in Table 1. Primer pairs with the most efficient 
performance were used in subsequent experiments.
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RT‑RPA reaction
RT-RPA reactions were performed using a RT-Basic RNA 
isothermal rapid amplification kit (Genenode, Wuhan, 
China) according to the manufacturer’s protocol. In brief, 
the reactions were performed at a total volume of 50 μL 
comprising RT-RPA enzymes, 2 μL RNA input, 29.4 μL 
A Buffer, 2 μL Forward primer (10  μM), 2 μL Reverse 
primer (10 μM), and 2.5 μL B Buffer. All reactions were 
incubated at 42  °C for 30  min in a PCR instrument or 
metal bath.

Cas12a detection reactions
Detection assays were performed with 10 μL RT-RPA 
products or 1 μL dsDNA plasmid, 1.25 μL purified 
Cas12a protein, 12.5 μL reaction Buffer (20  mM Tris–
HCl pH 7.5, 100 mM KCl, 5 mM  MgCl2, 1 mM DTT, 5% 
glycerol), 1 μL crRNA (200  nM), 0.25 μL RNase inhibi-
tor (RI), 1 μL ssDNA reporter, and water to make up a 
total volume of 25 μL. Reactions were incubated in a 
Real-Time PCR Detection System (ABI QuantStudio 5) 
or a fluorescence plate reader (Enspire, USA) for 1–2 h at 
37 °C with fluorescence signals measured every 5 min.

Lateral flow detection
After amplification was completed, 2 μL of amplification 
product was mixed with 25 μL reaction buffer, 2.5 μL 

LbCas12a, 2 μL crRNA, 2 μL probe (FAM-TTATT-Bio-
tin), 0.5 μL RI, and 16 μL  ddH2O, and given at 37 °C for 
2 h. A side-flow test strip was then added to the reaction 
tube and the results were observed after 2 min. A single 
band near the sample pad indicated a negative result, 
whereas a single band or two bands near the top of the 
test strip indicated a positive result.

rRT‑PCR assay for AIV testing
rRT-PCR detection of the AIV-M gene was performed 
using the QuantStudio 5 system according to the manu-
facturer’s instructions (Guanmu Biotechnology, Hunan, 
China). In brief, single-tube PCRs were prepared includ-
ing 19 μL reaction buffer, 1 μL enzyme mixture, and 5 μL 
RNA template. The amplification program was reverse 
transcription at 50  °C for 2  min, pre-denaturation at 
95  °C for 2  min, followed by 40 cycles of denaturation 
at 95  °C for 15  s and annealing and extension at 60  °C 
for 30  s. Fluorescence signals were collected during the 
annealing and extension steps per cycle.

Statistical analysis
The data were analyzed using GraphPad Prism 8.0 
(GraphPad Software, Inc.) for analysis of variance. Data 
are presented as the mean ± standard deviation of three 
independent experiments.

Table 1 Oligonucleotides used in this experiment

Primer name Sequence (5′–3′) Product 
size (bp)

crRNA-M-1 UAA UUU CUA CUA AGU GUA GAU AAG AAA AGA CGA UCA AGA AUC C

crRNA-M-2 UAA UUU CUA CUA AGU GUA GAU CAG GCC UAC CAG AAA CGGAU 

crRNA-M-3 UAA UUU CUA CUA AGU GUA GAU CAC UCC CAT CCG UUU CUGG 

crRNA-M-4 UAA UUU CUA CUA AGU GUA GAU UGU UCA CGC UCA CCG UGC CCA G

mRPA-4-F1 CAA GAC CAATC CTG TCA CCT CTG ACT AAG GG G 103

mRPA-4-R1 TTT TGG ACA AAG CGT CTA CGC TGC AGT CCT CGCTC 

mRPA-4-F2 CAATC CTG TCA CCT CTG ACT AAG GGG ATT TTA GGG 97

mRPA-4-R2 TTT TGG ACA AAG CGT CTA CGC TGC AGT CCT CGCTC 

mRPA-4-F3 AGA TCG  CGC AGA GAC TTG AGG ATG TCT TTG CAGGG 214

mRPA-4-R3 TCC ATG TTG TTT GGG TCT CCA TTT CCA TTT AGGGC 

crRNA-NP-1 UAA UUU CUA CUA AGU GUA GAU CGU CUG CUU CAA AAC AGC CAG 

NP1-RPA-F1 TGG ATA TGA CTT TGA GAG AGA AGG  GTA CTC CCTGG 137

NP1-RPA-R1 ATG CCA TCC ACA CTA GTT GAC TCT TGT GTG CTGGG 

NP1-RPA-F2 TAT GAC TTT GAG AGA GAA GGG TAC TCC CTG GTTGG 212

NP1-RPA-R2 GAT AGC TGT CCT CTT GGG ACC ATT CTT GTC CCTC 

NP1-RPA-F3 GAG AGA GAA GGG TAC TCC CTG GTT GGA ATA GATCC 89

NP1-RPA-F3 TTC TCA TTT GGT CTA ATG AGA CTA AAG ACC TGGC 

crRNA-NP-2 UAA UUU CUA CUA AGU GUA GAU CCG GAG AAG AGA CGG GAA AUG G

crRNA-NP-3 UAA UUU CUA CUA AGU GUA GAU UGG CAA GGU CUG CAC UCA UCC U

crRNA-NP-4 UAA UUU CUA CUA AGU GUA GAU GAA UUU CCC UUU GAG GAU GUU GC
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Results
Protein purification and verification of Cas12a protein 
activity
Sodium dodecyl sulfate–polyacrylamide gel electropho-
resis (SDS-PAGE) was performed on the bacterial pellet 

(before and after induction), supernatant, flow-through 
solutions, washing solutions, eluent, and proteins after 
digestion with the TEV enzyme (Fig.  2). The molecular 
weight of the original LbCas12a protein was 192.1 kDa. 
The actual protein size of LbCas12a after excision of the 
tag using the TEV enzyme was 143.7 kDa. According to 
the SDS-PAGE results, the Cas12a protein was highly 
expressed.

Optimization of reaction system
In this experiment, the reaction system, including RNase 
H, crRNA concentration,  Mg2+, pH, ssDNA reporter, and 
reaction buffer, was optimized to determine the optimal 
reaction system to fully utilize the cleavage efficiency of 
the Cas12a protein (Fig. 3). The results showed that the 
cleavage efficiency of Cas12a was highest when RNase H 
nuclease, 0.5 mM  Mg2+, pH 7, and 200 nM crRNA were 
used.

Screening of crRNA and primers
Four crRNA sequences were identified based on the con-
served sequences of the AIV M and NP genes, and the 
best crRNA sequences were determined using the fluo-
rescence method. The results showed that M-crRNA-4 
(Fig.  4a) and NP-crRNA-1 (Fig.  4c) had better effects, 

M 1 2 3 4 5 6 7

170 KDa
130 KDa

Fig. 2 SDS-PAGE gel plots of each sample of Cas12a. A: LbCas12a 
protein purification graph. M: Marker; 1: bacterial sedimentation 
before induction; 2: bacterial sedimentation after induction; 3: 
supernatant; 4: flow-through solutions; 5: washing solutions; 6: eluent; 
7: proteins after enzymatic digestion with TEV enzyme
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Fig. 3 Optimization of the RT-RPA and CRISPR/Cas12a system. a Cleavage effect of reaction buffers with different  Mg2+ concentrations 
on the CRISPR/Cas12a assay. b Cleavage effect of different dilution concentrations of crRNA on Cas12a protein cleavage efficiency. c Cleavage effect 
of reaction buffers with different pH values on the CRISPR/Cas12a assay. d Effect of RNase H nuclease on RT-RPA assays
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and the screened crRNAs were used in subsequent 
experiments.

Because the sequences of the amplification primers are 
critical for RPA, primers must be screened to determine 
the best detection. For each reaction, nine primer pairs 
targeting M (Fig. 4b) and NP genes (Fig. 4d) were tested 
using 1.17 ×  1012 copies/μL virus RNA as templates, and 
the best primer pairs (F1/R3) and (F3/R3) were identified 
for subsequent experiments.

Sensitivity and specificity tests
To determine the analytical sensitivity of this sys-
tem, the M and NP plasmids and RNA were used as 
templates for detection. The CRISPR/Cas12a system 
was able to detect a sensitivity of 2.4 ×  108 copies/
μL and 8.67 ×  108 copies/μL using plasmids including 
M and NP genes as templates, respectively, at tenfold 
serial diluted concentrations (Fig.  5a–f ). Next, tenfold 
serial dilutions of AIV RNA were used as templates 
for the detection of the M and NP genes (Fig.  5g–n). 
RT-RPA amplification was performed for the M and 
NP genes and the amplified products were examined 
using CRISPR/Cas12a. The results showed that after 

combining RT-RPA, the sensitivity of CRISPR/Cas12a 
detection could reach 6.7 copies/μL and 12 copies/μL.

In this experiment, RT-RPA/CRISPR was performed 
using the M and NP (Fig.  6a–f ) genes of the H1-H16 
subtypes of AIV as templates, and the results showed 
that this method was able to successfully detect 16 HA 
subtypes of AIV and determine the reliability of the 
assay. In addition, to examine the specificity of RT/
RPA-CRISPR for AIV detection, the established assay 
was used to detect other avian pathogens, including 
NDV, IBV, and IBDV (Fig.  6g–l). The results showed 
that all tested avian pathogens were negative except 
AIV, which was positive, indicating that this method is 
highly specific for the detection of AIV.

Assessment of RT‑RPA/CRISPR assays from avian clinical 
samples for consistency with commercial rRT‑PCR kits
To assess the performance of the RT/RPA-CRISPR 
assay, 81 clinical samples, including swabs and lungs, 
were analyzed using both RT/RPA-CRISPR and a com-
mercial rRT-PCR assay, as shown in Table 2.
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Fig. 4 Design and screening of crRNA and RPA primers. a Cleavage activity of CRISPR/Cas12a induced by four crRNAs targeting the AIV M gene, b 
primer screening for the M gene, c cleavage activity of CRISPR/Cas12a induced by four crRNAs targeting the AIV NP gene, and d primer screening 
for the NP gene. A comprehensive screen using a random combination of primers was used to identify the primer pairs with the best performance. 
Fluorescence signals were collected using the QuantStudio software (Applied Biosystems)
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Discussion
To date, the prevalence of AIV in most countries world-
wide has caused serious socioeconomic impact, restrict-
ing the trade of poultry products, affecting food safety, 
and posing a great health threat to humans [26, 27]. 
Currently, the main molecular diagnostic test for AIV is 
rRT-PCR, which has the advantages of high sensitivity 
and short turnaround time [28], but requires expensive 
instruments and professional operating personnel; there-
fore, it is inconvenient for POCT. In this study, a simple 
and sensitive RT-RPA method coupled with CRISPR/
Cas12a was developed for rapid AIV detection.

Notably, off-target and mismatch recognition effects 
could be major concerns in CRISPR/Cas12a-mediated 
nucleic acid tests. To solve these problems, four crRNAs 
each targeting the conserved sequences of the M and NP 
genes of AIV were designed and synthesized by screening 
and comparing the target sequences. Although the RPA 
technique has been successfully applied for the detection 
of many pathogens because of its high sensitivity and effi-
ciency [29, 30], it suffers from some intrinsic drawbacks, 
such as the issue of detection of RPA products, design 
rules, result determination of primers and probes, and 
the current lack of software for designing RPA primers. 
Therefore, in this study, primers were rigorously designed 

to achieve better amplification of the conserved target 
sequence.

The ability of the RT/RPA-CRISPR method to detect 
AIV has been demonstrated. The CRISPR/Cas12a-medi-
ated nucleic test fluorescence reporter system achieved a 
sensitivity level of 2.4 ×  108 copies/μL without RT-RPA. 
In combination with RT-RPA amplification, the RT/
RPA-CRISPR test detected RNA targets at a sensitivity 
level of 6.7 copies/μL and 12 copies/μL targeting the M 
and NP genes respectively. The crude extraction method 
(high-temperature or lysis buffer) can be used in the field 
with slightly decreased sensitivity, and further research 
is needed to develop a more suitable and optimized 
extraction method to meet the needs of on-site sample 
detection.

Visual detection is crucial for nucleic acid diagnosis, 
particularly in the absence of experimental instrumenta-
tion. In this study, a reporter labeled with FAM on the 5′ 
end and BHQ1 on the 3′ end was used. After Cas12a pro-
tein cleavage, green signals were observed with the naked 
eye under UV irradiation when the target was present. 
With the method, a detection sensitivity of 6.7 copies/
μL was achieved, which is comparable with the fluores-
cence plate reader method. In addition, another reporter 
labeled with FAM molecules at the 5′ end and biotin at 
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Fig. 5 Sensitivity analysis. a, c, e Ten-fold serial dilutions of plasmid template targeting the M gene at 2.4 ×  1011 copies/µl for the sensitivity assay; 
b, d, f tenfold serial dilutions of plasmid template targeting the NP gene at 8.67 ×  1011 copies/µl for the sensitivity assay; (M:11–4, 2.4 ×  1011 copies/
µl–2.4 ×  104 copies/µl; NP:11–4, 8.67 ×  1011 copies/µl–8.67 ×  104 copies/µl); g, h, i, m tenfold serial dilutions of RNA template targeting M gene 
at 6.7 ×  1011 copies/μL for the sensitivity assay by RT-RPA/CRISPR; i, k, l, n tenfold serial dilutions of RNA template targeting NP gene at 12 ×  1011 
copies/μL for the sensitivity assay by RT-RPA/CRISPR. (M:11–0, 6.7 ×  1011 copies/µl–6.7 ×  100 copies/µl; NP:11–0, 12 ×  1011 copies/µl–12 ×  100 copies/
µl). Fluorescent signals were collected every 5 min and displayed for 2 h and 30 min, respectively
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the 3′ end was developed. When bound to lateral flow 
strips, the disruption of the reporter was visible to the 
naked eye. This method exhibited slightly lower ana-
lytical sensitivity to the template than the fluorometric 
method because of the influence of the strip itself [31].

Next, the sensitivity of the RT-PCR/CRISPR assay was 
compared with that of the rRT-PCR and RT/RPA-only 
methods. These results indicate that RT-RPA/CRISPR 
can be detected with a somewhat higher sensitivity than 
real-time fluorescent RT-PCR and RT-RPA-only detec-
tion methods, an observation that may be attributed to 

the signal amplification effect induced by the trans-cleav-
age activity of Cas12a.

In summary, an RT-RPA/CRISPR-Cas12a method was 
developed for the rapid and sensitive detection of AIV. By 
combining the lateral flow strips and RT-RPA/CRISPR-
Cas12a, this detection system has several advantages, 
including high sensitivity, low reliance on sophisticated 
instruments and trained specialists, short assay time, 
ease of operation, cost-effectiveness, and enhanced test-
ing accuracy [32]. The new system has strong potential 
as an accurate, user-friendly, and inexpensive platform 
for point-of-care testing applications in CRISPR-based 
diagnostics.

Abbreviations
AI  Avian influenza
AIV  Avian influenza virus
POCT  Point-of-care testing
SDS-PAGE  Sodium dodecyl sulfate–polyacrylamide gel electrophoresis
rRT-PCR  Real-time reverse transcription-polymerase chain reaction
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CRISPR-Cas  Clustered regularly interspaced short palindromic repeats and 

associated protein
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Fig. 6 Specificity analysis. RNA of AIVs, IBDV, NDV, and IBV were used as templates for RT-RPA/CRISPR specificity; a, c, e the RNA of 16 HA subtypes 
of AIV was used as templates, the M gene was targeted for RT-RPA/CRISPR sensitivity detection; b, d, f the RNA of 16 HA subtypes of AIV was used 
as templates, the NP gene was targeted for RT-RPA/CRISPR sensitivity detection; g, i, k specificity assay with the M gene as target; h, j, l specificity 
assay with the NP gene as target

Table 2 The performance of RT/RPA-CRISPR for AIV detection in 
clinical samples compared with real-time RT-PCR

Methods CRISPR/Cas12a‑RT/RPA

rRT‑PCR Positive Negative Total

Positive 53 1 54

Negative 1 26 27

Total 54 27 81

Coincidence rate: 97.5%

Sensitivity: 100%

Specificity: 100%
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