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Abstract

Background: H5N2 avian influenza viruses (AIVs) can infect individuals that are in frequent contact with infected
birds. In 2013, we isolated a novel reassortant highly pathogenic H5N2 AIV strain [A/duck/Zhejiang/6DK19/2013(H5N2)
(6DK19)] from a duck in Eastern China. This study was undertaken to understand the adaptive processes that led
enhanced replication and increased virulence of 6DK19 in mammals. 6DK19 was adapted to mice using serial
lung-to-lung passages (10 passages total). The virulence of the wild-type virus (WT-6DK19) and mouse-adapted
virus (MA-6DK19) was determined in mice. The whole-genome sequences of MA-6DK19 and WT-6DK19 were
compared to determine amino acid differences.

Findings: Amino acid changes were identified in the MA-DK19 PB2 (E627K), PB1 (I181T), HA (A150S), NS1 (seven amino
acid extension “WRNKVAD” at the C-terminal), and NS2 (E69G) proteins. Survival and histology analyses demonstrated
that MA-6DK19 was more virulent in mice than WT-6DK19.

Conclusion: Our results suggest that these substitutions are involved in the enhanced replication efficiency and
virulence of H5N2 AIVs in mammals. Continuing surveillance for H5N2 viruses in poultry that are carrying these
mutations is required.
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Findings
Highly pathogenic H5 avian influenza viruses (AIVs)
emerged from Asia in 2003 and have caused severe
epidemics among poultry and humans [1–4]. Of the
850 human cases reported to the World Health
Organization as of April 4, 2016, 449 (52.8 %) were
fatal [5]. Given that highly pathogenic H5 AIVs con-
tinue to cross into the human population and that
humans lack pre-existing immunity to the viruses,
there is the possibility that a pandemic human influ-
enza virus will emerge.
Live poultry markets (LPMs), sites for the sale and

slaughter of domestic poultry in East Asia [6, 7], are
major venues for AIV dissemination, influenza virus
reassortment, and cross-species transfer of AIVs [6, 8–10].

H5N2 AIVs are consistently found in poultry from
LPMs [4, 11, 12] and transmission to individuals in
frequent contact with infected birds has been well
documented [13, 14]. In addition to active surveil-
lance of LPMs for emergent AIVs, it is necessary to
understand the adaptive processes that cause H5N2
AIVs to become highly pathogenic (defined as
enhanced replication and increased virulence) in
mammals.
Our laboratory has previously isolated a novel reassor-

tant highly pathogenic H5N2 AIV [A/duck/Zhejiang/
6DK19/2013 (H5N2) (6DK19)] from an apparently
healthy domestic duck from a LPM [11]. This study was
undertaken to investigate the amino acid substitutions
associated with adaptation of 6DK19 to mammals, and
to determine the virulence of mouse-adapted 6DK19
in vivo.
All of the animal experiments described in this study
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(No. 2015-15). 6DK19 was adapted to a murine host by
serial lung-to-lung passage (10 passages) of the wildtype
(WT) 6DK19 virus as described previously [15, 16] to ob-
tain the mouse-adapted virus [A/duck/Zhejiang/6DK19-
mouse-adapted/2013(H5N2), MA-6DK19]. Six-week-old
female BALB/c mice (n = 5) were inoculated intranasally
with 106.0 EID50 (50 % embryo infectious dose) of 6DK19
in 50 μL of phosphate buffered saline (PBS). Based on pre-
viously published studies, 6DK19 was moderately patho-
genic in mice [11]. Mice were sacrificed at 3 days post-
inoculation (dpi) and the lungs were harvested in 1 mL of
PBS. The lung tissue was disrupted and then centrifuged.
Fifty microliters (50 μL) of supernatant was used to inocu-
late the subsequent naïve mouse in the series. The patho-
genicities of WT-DK619 and MA-DK619 were tested in 15
6-week-old female BALB/c mice inoculated intranasally
with 106.0 EID50 (50 μL). Three mice were sacrificed from
each group at 3, 6, and 9 dpi, and the viral titer in the lung,
brain, heart, liver, kidney, and spleen was determined in
embryonated chicken eggs by the Reed and Muench
method [17]. Survival and weight-loss were monitored in
the remaining six mice in each group until 14 dpi. A group
of mock-infected mice (n = 6) was included as a control.
All experiments with the H5N2 viruses were performed in
a Biosafety Level 3 laboratory.
Lung tissue samples from WT-6DK19 or MA-6DK19

infected mice were fixed in 10 % neutral buffered forma-
lin, embedded in paraffin, then cut into 4 μm-thick

sections and stained with hematoxylin and eosin (H&E).
Immunohistochemical staining was performed to detect
nucleoprotein antigens in the lungs. The tissues were in-
cubated overnight at 4 °C with a monoclonal antibody
against the influenza A virus nucleoprotein, then the
sections were washed 3 times with PBS and incubated
with an HRP–conjugated goat anti–mouse secondary
antibody. The sections were developed with 3–3′ diami-
nobenzidine and examined under a light microscope as
described previously [18].
To identify the virulence-associated molecular markers

of MA-6DK19, the whole genomes of MA-6DK19 and
WT-6DK19 were sequenced and compared to identify
amino acid changes. Viral RNA was extracted from the
supernatant of the disrupted lung tissue using TRIzol.
The Uni12 primer was used to synthesize cDNA from
viral RNA: 5ʹ-AGCAAAAGCAGG-3ʹ. RT-PCR was
conducted using a PrimeScript™ 1st Strand cDNA Synthe-
sis Kit and PrimeSTAR® Max DNA Polymerase (TaKaRa).
All of the gene segments from WT-6DK19 and MA-
6DK19 were amplified with segment-specific primers as
described previously [19]. All eight segments of these vi-
ruses sequenced using Sanger sequencing on an ABI 3730
genetic analyser (Applied Biosystems). The sequences
were analysed using BioEdit version 7.0.9.0 DNA software.
The sequence data of WT-6DK19 and MA-6DK19 have
been deposited in GenBank (accession nos. KJ933374-
KJ933381 and KX714303-KX714310).

Table 1 Nucleotide and amino acid substitutions identified in a mouse-adapted highly pathogenic H5N2 avian influenza virus

Segment Nucleotide position Nucleotide substitution Amino acid position Amino acid substitution

PB2 1879 (G→ A) Passage 2 (P2) G 627(E→ K) E

P3 G/A E/K

P4 A K

P10 A K

PB1 542 (T→ C) P7 T 181 (I→ T) I

P8 C T

P10 C T

2103 T→ C 701 -

2112 A→ G 704 -

HA 448 (G→ T) P6 G 150 (A→ S) A

P7 G/T A/S

P8 T S

P10 T S

NS 678 (A→ G) P8 A NS1, 226 (Terminator→W) Terminator

NS2, 69 (E→ G) E

P9 A/G NS1, 226 Terminator/(W, “WRNKVAD” was extended)

NS2, 69 E/G

P10 G NS1, 226 W, “WRNKVAD” was extended

NS2, 69 G

“-” Synonymous substitution
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Amino acid substitutions that increase the virulence of
H5 AIVs adapted to mammalian hosts have been shown
to emerge after the fifth or sixth passage through naïve
mice [20, 21]. Here, some of these mutations were detected
as early as the fourth passage (Table 1 and Additional file 1:
Figure S1). In contrast to mice infected with WT-MDK19

that exhibited minimal weight loss, mice infected with
MA-6DK19 exhibited rapid weight-loss beginning on 2
dpi (Fig. 1) and had clear clinical signs of illness. The sur-
vival rate for mice infected with WT-6DK19 was 83.3 %
(5/6) up to 14 dpi (Table 2). In contrast, none of mice in-
fected with MA-6DK19 survived to 14 dpi, indicating that

Fig. 1 Survival and body weight were measured in mice infected with the H5N2 viruses. Survival (a) and body weight (b) were measured in
BABL/c mice infected with the wild-type (WT-6DK19) or mouse-adapted (MA-6DK19) strains of an H5N2 avian influenza virus (n = 6/group). Each
mouse was infected intranasally with 106.0 EID50 of virus in a 50 μL volume. The number of surviving mice and their body weights were measured
daily from the date of challenge to 14 days post inoculation

Table 2 Viral titer of wild-type and mouse-adapted H5N2 avian influenza viruses in tissue

Virus Days
post-infection

Virus titers in organs of mice (log10 EID50/mL)
no. virus-positive mice/no. tested mice (mean titer ± SD)

Lung Spleen Kidney Liver Brain Heart

Wild-type virus
(WT-6DK19)

3 3/3(4.0 ± 0) 1/3(2.0 ± 0) 1/3(2.0 ± 0) 3/3(1.5 ± 0.5) 2/3(2.5 ± 0.5) 3/3(1.5 ± 0.5)

6 3/3(4.5 ± 0.5) 2/3(2.0 ± 0.0) 3/3(2.0 ± 0) 2/3(2.0 ± 0) 3/3(1.5 ± 0.5) 3/3(2.0 ± 0)

9 3/3(3.5 ± 0) 2/3(2.0 ± 0.0) 0/3 2/3(1.0 ± 0) 3/3(1.5 ± 0.5) 3/3(2.0 ± 0)

Mouse-adapted virus
(MA-6DK19)

3 3/3(5.5 ± 0.5) 3/3(2.5 ± 0.5) 3/3(3.0 ± 0) 3/3(2.5 ± 0.5) 3/3(2.5 ± 0.5) 3/3(3.0 ± 0)

6 ND ND ND ND ND ND

9 ND ND ND ND ND ND

Fifteen (15) mice/group were inoculated intranasally with 106.0 EID50 of either the wild-type (WT-6DK19) or mouse-adapted (MA-6DK19) viruses in a 50 μL volume.
Three mice per group were sacrificed at 3, 6, or 9 dpi and the lung, brain, heart, kidney, spleen, and liver tissues were collected. The viral titer in each tissue was
determined in embryonated chicken eggs by the Reed and Muench method. Values represent mean ± SD. ND: Not determined. None of mice infected with
MA-6DK19 survived past 5 dpi
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MA-6DK19 is more virulent in mice than WT-6DK19.
Mice infected with MA-6DK19 had multifocal severe
interstitial inflammatory hyperaemia and exudative patho-
logical changes, large lesions in the lung tissue, and red
blood cell and inflammatory cell infiltrates at 3 dpi (Fig. 2).
Cells infected with H5N2 AIV were detected in the bron-
chial epithelium and alveolar epithelium from infected
mice 3 dpi.
During the adaptation process, six nucleotide substitu-

tions and five amino acid substitutions were observed
(Table 1): (1) an E→K substitution in polymerase basic
protein 2 (PB2) at position 627, (2) an I→T substitution
in polymerase basic protein 1 (PB1) at position 181, (3)

an A→ S substitution in hemagglutinin (HA) at position
150, (4) seven amino acids (WRNKVAD) were added at
the C-terminal of the nonstructural protein 1 (NS1), and
(5) an E→G substitution in NS2 at position 69. The
E627K substitution in the PB2 protein has been reported
to influence host range and to confer increased virulence
in models of H3, H5, H6, and H9 infection [22–25]. The
A149 (or 150) substitution has been reported to be in-
volved in the 150-loop of the receptor binding domain
and is implicated in the adaptation of AIVs to mamma-
lian hosts [26, 27]. Previously, the C-terminal ESEV
motif has been shown to increase viral virulence when
introduced into the NS1 protein of mouse-adapted influ-
enza virus in a strain dependent manner [28, 29]. The
significance of the seven amino acid addition to MA-
6DK19 NS1 is not entirely clear [30], and it has been
observed frequently in H5N8 viruses in recent years
(Additional file 2: Table S1). Compared to WT-6DK19,
the mouse-adapted virus had expanded tissue tropism
and increased replication kinetics in vivo; however, the
substitutions that contributed to mouse adaptation re-
main to be further studied.
Mice are widely used to study the pathogenesis of

AIVs [25, 31]. Several amino acid substitutions in-
cluding PB2 (Q591K and D701N), polymerase acidic
protein (PA) (I554V), HA (S227N), and NP (R351K)
have been described in mouse adapted H5N2 AIVs
that have increased virulence and enhanced replica-
tion kinetics in mice and cell lines [20]. In this study,
amino acid substitutions, in the PB2 (E627K), PB1
(I181T), HA (A150S), NS1 (WRNKVAD was extended
at the C-terminal of the protein), and NS2 (E69G)
proteins were identified in a MA-6DK19. These
changes were associated with increased virulence
compared with the wild-type virus, and the mouse-
adapted virus became lethal in mice. These results
provide insights into the pathogenic potential of novel
reassortant H5N2 AIVs in mammals, and suggest that
continued H5N2 molecular epidemiology studies are
critical to understand the variability and evolutionary
mechanisms of AIVs.

Additional files

Additional file 1: Figure S1. Comparison of the PB2, PB1, HA, and NS
segment sequences of the H5N2 viruses in differnet passages. (DOC 316 kb)

Additional file 2: Table S1. Amino acid substitutions in PB2, PB1, HA,
NS1 and NS2 proteins of H5 influenza A viruses. (DOC 76 kb)
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AIVs: Avian influenza viruses; dpi: Days post-inoculation; EID50: 50 %
embryo infectious dose; HA: Hemagglutinin; LPMs: Live poultry markets;
MA: Mouse-adapted; PA: Polymerase acidic protein; PB1: Polymerase basic
protein 1; PB2: Polymerase basic protein 2; PBS: Phosphate buffered saline;
WT: Wildtype

Fig. 2 Histology and immunohistochemistry of mice infected with
the mouse-adapted H5N2 avian influenza virus. Lung pathology was
determined in mice infected with mouse-adapted strain of an H5N2
avian influenza virus at 3 days post inoculation (dpi) (a). Hematoxylin
and eosin staining was used to examine the histology of the lung
tissue. Mice infected with the mouse-adapted virus displayed
severe interstitial pneumonia in lung tissues, shown by the alveolar
lumen flooded with dropout from alveolar cells, erythrocytes, and
inflammatory cells (diamond); and congestion in the blood vessels
(triangle). Viral nucleoprotein was detected in the lungs using
immunohistochemistry in mice infected with the mouse-adapted
viruses (b). Arrows indicate positively stained lung alveolar
epithelial cells

Wu et al. Virology Journal  (2016) 13:159 Page 4 of 5

dx.doi.org/10.1186/s12985-016-0612-5
dx.doi.org/10.1186/s12985-016-0612-5


Acknowledgements
We would like to thank the native English speaking scientists of Elixigen
Company (Huntington Beach, California) for editing our manuscript. This work
was supported by grants from the National Science Foundation of the People’s
Republic of China (81502852), Zhejiang Provincial Natural Science Foundation
of China (Y15H190006), and the Independent Task of State Key Laboratory for
Diagnosis and Treatment of Infectious Diseases (Nos. 2015ZZ05 and 2016ZZ03).

Availability of supporting data
The data sets supporting the results of this article are included within the
article.

Authors’ contributions
HW, NW conceived and designed the assays. HW, Xiuming Peng, Xiaorong
Peng conducted experimental work. HW, NW analysed the data and wrote
the paper. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Ethics approval
The animal experiments conducted in this study were approved by the First
Affiliated Hospital, School of Medicine, Zhejiang University (No. 2015-15).

Received: 31 May 2016 Accepted: 13 September 2016

References
1. Li KS, Guan Y, Wang J, Smith GJ, Xu KM, Duan L, et al. Genesis of a highly

pathogenic and potentially pandemic H5N1 influenza virus in eastern Asia.
Nature. 2004;430:209–13.

2. Li Y, Shi J, Zhong G, Deng G, Tian G, Ge J, et al. Continued evolution of
H5N1 influenza viruses in wild birds, domestic poultry, and humans in
China from 2004 to 2009. J Virol. 2010;84:8389–97.

3. OIE. Highly pathogenic avian influenza,China,H5N6. 2014. http://www.oie.
int/wahis_2/public/wahid.php/Reviewreport/Review?reportid=15957.

4. Zhao G, Gu X, Lu X, Pan J, Duan Z, Zhao K, et al. Novel reassortant highly
pathogenic H5N2 avian influenza viruses in poultry in China. PLoS One.
2012;7:e46183.

5. WHO. Cumulative number of confirmed human cases for avian influenza
A(H5N1) reported to WHO, 2003-2015. 2015. http://www.who.int/influenza/
human_animal_interface/H5N1_cumulative_table_archives/en/.

6. Liu M, He S, Walker D, Zhou N, Perez DR, Mo B, et al. The influenza
virus gene pool in a poultry market in South central china. Virology.
2003;305:267–75.

7. Nguyen DC, Uyeki TM, Jadhao S, Maines T, Shaw M, Matsuoka Y, et al.
Isolation and characterization of avian influenza viruses, including highly
pathogenic H5N1, from poultry in live bird markets in Hanoi, Vietnam, in
2001. J Virol. 2005;79:4201–12.

8. Wu HB, Guo CT, Lu RF, Xu LH, Wo EK, You JB, et al. Genetic characterization
of subtype H1 avian influenza viruses isolated from live poultry markets in
Zhejiang Province, China, in 2011. Virus Genes. 2012;44:441–9.

9. Hai-bo W, Chao-tan G, Ru-feng L, Li-hua X, En-kang W, Jin-biao Y, et al.
Characterization of a highly pathogenic H5N1 avian influenza virus isolated
from ducks in Eastern China in 2011. Arch Virol. 2012;157:1131–6.

10. Chen Y, Liang W, Yang S, Wu N, Gao H, Sheng J, et al. Human infections
with the emerging avian influenza A H7N9 virus from wet market
poultry: clinical analysis and characterisation of viral genome. Lancet.
2013;381:1916–25.

11. Wu H, Peng X, Xu L, Jin C, Cheng L, Lu X, et al. Characterization of a novel
highly pathogenic H5N2 avian influenza virus isolated from a duck in
eastern China. Arch Virol. 2014;159:3377–83.

12. Gu M, Huang J, Chen Y, Chen J, Wang X, Liu X. Genome sequence of a
natural reassortant H5N2 avian influenza virus from domestic mallard ducks
in eastern China. J Virol. 2012;86:12463–4.

13. Wu HS, Yang JR, Liu MT, Yang CH, Cheng MC, Chang FY. Influenza A(H5N2)
Virus Antibodies in Humans after Contact with Infected Poultry, Taiwan,
2012. Emerg Infect Dis. 2014;20:857–60.

14. Ogata T, Yamazaki Y, Okabe N, Nakamura Y, Tashiro M, Nagata N, et al.
Human H5N2 avian influenza infection in Japan and the factors associated
with high H5N2-neutralizing antibody titer. J Epidemiol. 2008;18:160–6.

15. Yao Y, Wang H, Chen Q, Zhang H, Zhang T, Chen J, et al. Characterization of
low-pathogenic H6N6 avian influenza viruses in central China. Arch Virol.
2013;158:367–77.

16. Chen Q, Yu Z, Sun W, Li X, Chai H, Gao X, et al. Adaptive amino acid
substitutions enhance the virulence of an H7N7 avian influenza virus
isolated from wild waterfowl in mice. Vet Microbiol. 2015;177:18–24.

17. Reed L, Muench H. A simple method for estimating fifty percent endpoints.
Am J Hyg. 1938;27:493–7.

18. Wu H, Peng X, Cheng L, Lu X, Jin C, Xie T, et al. Genetic and molecular
characterization of H9N2 and H5 avian influenza viruses from live poultry
markets in Zhejiang Province, eastern China. Sci Rep. 2015;5:17508.

19. Hoffmann E, Stech J, Guan Y, Webster RG, Perez DR. Universal primer
set for the full-length amplification of all influenza A viruses. Arch Virol.
2001;146:2275–89.

20. Li Q, Wang X, Zhong L, Sun Z, Gao Z, Cui Z, et al. Adaptation of a natural
reassortant H5N2 avian influenza virus in mice. Vet Microbiol. 2014;172:568–74.

21. Peng X, Wu H, Wu X, Cheng L, Liu F, Ji S, et al. Amino acid substitutions
occurring during adaptation of an emergent H5N6 avian influenza virus to
mammals. Arch Virol. 2016;161:1665-70.

22. Shinya K, Hamm S, Hatta M, Ito H, Ito T, Kawaoka Y. PB2 amino acid at
position 627 affects replicative efficiency, but not cell tropism, of Hong
Kong H5N1 influenza A viruses in mice. Virology. 2004;320:258–66.

23. Ping J, Dankar SK, Forbes NE, Keleta L, Zhou Y, Tyler S, et al. PB2 and
hemagglutinin mutations are major determinants of host range and
virulence in mouse-adapted influenza A virus. J Virol. 2010;84:10606–18.

24. Tan L, Su S, Smith DK, He S, Zheng Y, Shao Z, et al. A combination of HA
and PA mutations enhances virulence in a mouse-adapted H6N6 influenza
A virus. J Virol. 2014;88:14116–25.

25. Wang J, Sun Y, Xu Q, Tan Y, Pu J, Yang H, et al. Mouse-adapted H9N2
influenza A virus PB2 protein M147L and E627K mutations are critical for
high virulence. PLoS One. 2012;7:e40752.

26. Crusat M, Liu J, Palma AS, Childs RA, Liu Y, Wharton SA, et al. Changes in
the hemagglutinin of H5N1 viruses during human infection–influence on
receptor binding. Virology. 2013;447:326–37.

27. Yang H, Chen LM, Carney PJ, Donis RO, Stevens J. Structures of receptor
complexes of a North American H7N2 influenza hemagglutinin with a loop
deletion in the receptor binding site. PLoS Pathog. 2010;6:e1001081.

28. Zielecki F, Semmler I, Kalthoff D, Voss D, Mauel S, Gruber AD, et al. Virulence
determinants of avian H5N1 influenza A virus in mammalian and avian
hosts: role of the C-terminal ESEV motif in the viral NS1 protein. J Virol.
2010;84:10708–18.

29. Soubies SM, Volmer C, Croville G, Loupias J, Peralta B, Costes P, et al.
Species-specific contribution of the four C-terminal amino acids of influenza
A virus NS1 protein to virulence. J Virol. 2010;84:6733–47.

30. Hale BG, Randall RE, Ortin J, Jackson D. The multifunctional NS1 protein of
influenza A viruses. J Gen Virol. 2008;89:2359–76.

31. Belser JA, Gustin KM, Pearce MB, Maines TR, Zeng H, Pappas C, et al.
Pathogenesis and transmission of avian influenza A (H7N9) virus in ferrets
and mice. Nature. 2013;501:556–9.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

Wu et al. Virology Journal  (2016) 13:159 Page 5 of 5

http://www.oie.int/wahis_2/public/wahid.php/Reviewreport/Review?reportid=15957
http://www.oie.int/wahis_2/public/wahid.php/Reviewreport/Review?reportid=15957
http://www.who.int/influenza/human_animal_interface/H5N1_cumulative_table_archives/en/
http://www.who.int/influenza/human_animal_interface/H5N1_cumulative_table_archives/en/

	Abstract
	Background
	Findings
	Conclusion

	Findings
	Additional files
	show [aa]
	Acknowledgements
	Availability of supporting data
	Authors’ contributions
	Competing interests
	Ethics approval
	References

