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Abstract

Background: Hepatitis B virus (HBV) infection is one of the main human health problem and causes a large-scale
of patients chronic infection worldwide.. As the replication of HBV depends on its host cell system, codon usage
pattern for the viral gene might be susceptible to two main selections, namely mutation pressure and translation
selection. In this case, a deeper investigation between HBV evolution and host adaptive response might assist
control this disease.

Result: Relative synonymous codon usage (RSCU) values for the whole HBV coding sequence were studied by
Principal component analysis (PCA). The characteristics of the synonymous codon usage patterns, nucleotide
contents and the comparison between ENC values of the whole HBV coding sequence indicated that the
interaction between virus mutation pressure and host translation selection exists in the processes of HBV evolution.
The synonymous codon usage pattern of HBV is a mixture of coincidence and antagonism to that of host cell. But
the difference of genetic characteristic of HBV failed to be observed to its different epidemic areas or subtypes,
suggesting that geographic factor is limited to influence the evolution of this virus, while genetic characteristic
based on HBV genotypes could be divided into three groups, namely (i) genotyps A and E, (ii) genotype B, (iii)
genotypes C, D and G.

Conclusion: Codon usage patterns from PCA for identification of evolutionary trends in HBV provide an alternative
approach to understand the evolution of HBV. Further more, a combined selection of mutation pressure with
translation selection on codon usage might shed a light on understanding the evolutionary trends of HBV
genotypes.
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Introduction
Hepatitis B virus (HBV) disease is one of the main glo-
bal health problems that two billion people are infected
and 350 million people undergo chronic infection as
well [1]. HBV belongs to the protyotype member of the
family Hepadnaviridae, and has a compact and circular
DNA genome of about 3.2 kb in length, with four over-
lapping open reading frames including large S region
(PreS/S), PreC/C, × and P [2,3]. Moreover, the overlap-
ping regions on the genome are helpful to study the

evolution of the virus with its point mutations, because
the incidence of recombination is rare and any point
mutation could effect the genetic characteristics of two
overlapped genes [3]. The evolution of HBV should be
interactional and constrained by the overlap of genes
[4]. In some cases, the evolution of one overlapping-
gene protein may evolve more rapidly as a consequce of
negative selection to the other,[5]. And the overlapping
genes might be subject to different selections [6].
Furthermore, independent adaptive selection for both
overlapping genes has been reported [7]. One of the
main features of HBV are its genetic heterogeneity [8].
There are four main subtypes, namely ayw, adw, adr
and ayr [9]. According to phylogenetic analysis of the
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complete HBV genomic sequence, 9 genotype of HBV
from genotype A to I have been determined and divided
into approximately twenty-five subgenotypes [10-14].
HBV genotypes show distinct geographical distributions
at the level of nucleotide different more than 8% each
other [11,15,16]. It is noticed that nucleotide composition
comprising of HBV coding sequence with various genetic
diversities is selective rather than random, because the
natural selection from host is responsible for selection of
various strains shaped by mutation. In previous reports,
translation selection and compositional constraints under
the mutational pressure are thought to be the major fac-
tors accounting for codon usage variation among gen-
omes in microorganisms [17-24]. In some RNA viruses,
compared with natural selection, mutation pressure plays
a more important role in synonymous codon usage pat-
tern [25,26]. Although it is known that compositional
constraints and translation selection are the more gener-
ally accepted mechanisms accounting for codon usage
bias [27-30], other selection forces have also been pro-
posed such as fine-tuning translation kinetics selection as
well as escape of cellular antiviral responses [23,31-34].
Thus, the codon usage pattern may be important in dis-
closing the molecular mechanism and evolutionary pro-
cess of HBV to avoid host cell response. To our
knowledge, it is the first systemic study to analysis the
synonymous codon usage pattern and evolutional
dynamics of HBV as well as the relationship between
codon usage pattern of HBV and its host.

Result
Synonymous coodn usage in HBV
The C% and U% were higher than A% and G%, and C3%
and U3% were higher than A3% and G3% in HBV (Table 1).
The overall nucleotide composition never affects the

nucleotide contents in the third site of codon in HBV
coding sequence, suggesting that composition con-
straints may be one of the factors in affecting the codon
usage pattern of HBV. For the synonymous codon usage
pattern of HBV, the over-represented synonymous
codons are rare in HBV coding sequence, only including
UCU for Ser, in addition, the under-represented ones
contain AUA for Ile, CCC for Pro, ACC for Thr, GCC
for Ala, CGU and CGG for Arg (Table 2).
The codon usage bias of HBV suggests that some

synonymous codons are not chosen equally and
randomly.

Genetic relationship based on synonymous codon usage
in HBV
The PCA detected the first principal component (f1’)
which can account for 23.65% of the total synonymous
codon usage variation, and the second principal

Table 1 The overall nucleotide contents and nucleotide
contents at the synonymous third position of sense
codons in the whole coding sequence of HBV

No. T% C% A% G% T3% C3% A3% G3%

1 27.88 28.16 22.21 21.75 29.94 27.27 21.23 21.56

2 28.28 28.04 21.59 22.09 29.75 27.90 20.57 21.78

3 27.35 28.20 22.04 22.42 29.40 27.04 21.19 22.37

4 27.56 28.33 21.96 22.15 29.44 27.58 20.91 22.07

5 27.85 27.87 22.26 22.02 30.23 26.33 21.75 21.69

6 27.56 28.50 21.93 22.02 29.20 27.73 21.12 21.95

7 27.60 28.50 21.93 21.97 29.27 27.73 21.12 21.89

8 27.60 28.50 21.87 22.04 29.27 27.73 21.05 21.95

9 28.09 27.38 21.88 22.64 29.94 26.10 21.55 22.40

10 28.35 27.23 23.29 21.13 31.95 25.71 22.51 19.83

11 28.12 27.48 21.88 22.52 29.73 26.53 21.48 22.26

12 27.54 27.83 21.87 22.77 28.68 27.54 21.22 22.57

13 28.21 26.97 23.04 21.78 29.04 27.58 21.65 21.73

14 27.95 28.17 21.52 22.35 29.96 27.41 20.76 21.88

15 27.95 28.11 21.79 22.15 30.14 27.04 21.19 21.63

16 27.43 28.01 21.98 22.58 29.58 26.79 21.07 22.56

17 28.65 27.79 21.75 21.82 30.55 27.04 21.14 21.28

18 28.72 27.91 21.39 21.98 29.75 26.45 21.75 22.05

19 28.57 28.40 21.21 21.82 28.25 28.35 21.15 22.25

20 28.55 28.41 21.22 21.82 28.23 28.34 21.19 22.24

21 28.57 28.39 21.22 21.82 28.23 28.34 21.19 22.24

22 28.34 28.27 21.62 21.77 29.48 27.47 21.19 21.86

23 28.22 28.07 21.66 22.04 29.66 27.05 21.24 22.04

24 28.43 28.00 21.65 21.91 30.25 27.24 21.22 21.29

25 27.57 27.99 21.81 22.62 29.71 26.79 20.94 22.56

26 28.74 27.98 21.56 21.72 29.78 26.53 21.96 21.74

27 28.60 28.24 21.39 21.77 29.34 27.14 21.70 21.83

28 28.68 28.17 21.64 21.52 29.56 27.01 21.96 21.48

29 28.78 28.14 21.43 21.65 29.60 26.97 21.74 21.70

30 28.66 28.25 21.36 21.72 29.47 26.97 21.56 22.00

31 28.78 27.68 22.10 21.45 30.76 25.77 22.13 21.34

32 29.07 27.45 21.85 21.63 30.85 25.90 21.91 21.34

33 29.08 27.56 21.65 21.71 30.76 26.25 21.65 21.34

34 28.81 27.42 22.08 21.69 30.63 25.68 22.34 21.34

35 28.39 27.90 21.71 22.01 29.67 26.72 21.52 22.08

36 28.72 27.77 21.92 21.59 30.59 26.12 22.08 21.21

37 28.98 27.52 21.89 21.61 30.63 26.16 21.87 21.34

38 28.95 27.61 21.89 21.55 30.67 26.25 22.04 21.04

39 29.05 27.42 21.85 21.68 30.89 25.81 22.08 21.21

40 28.95 27.59 21.91 21.55 30.85 25.99 21.74 21.43

41 28.42 27.75 21.79 22.04 29.89 26.46 21.78 21.87

42 28.88 27.45 21.89 21.78 30.76 25.55 22.08 21.61

43 28.47 27.65 22.25 21.63 30.91 26.21 21.74 21.14

44 28.99 27.49 21.92 21.59 30.37 26.03 22.21 21.39

45 28.99 27.45 21.95 21.61 30.55 25.90 22.12 21.42

46 28.71 27.72 21.97 21.61 30.28 26.38 22.17 21.17

47 28.71 27.72 21.97 21.61 30.28 26.38 22.17 21.17

48 27.51 27.78 22.15 22.55 29.81 26.46 21.52 22.22

49 27.43 27.93 21.98 22.66 29.21 26.91 21.19 22.68
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component (f2’) for 19.47% of the total variation. Based
on the geographical factor in influencing HBV evolution
potentially, there is an obviously geographical distribu-
tion. For example, the overall codon usage pattern of
HBV isolated from Philippines and South Korea is far
from those of China and Indonesia, and the HBV iso-
lated from Germany and Iran has a similar genetic
diversity with that isolated from South Africa (Figure 1).
Based on the subtypes of HBV, the plots for the sub-

type adw were generally divided into two groups, while
the other three subtypes seem to have a similar genetic
characteristic (Figure 2).
It is worth noting that the plots for different HBV

genotypes were generally separated from each other.
Moreover, the genotypes A and B have an obviously dif-
ferent genetic characteristic with the rest, while geno-
types C, D and G appear to have a relationship of
evolution (Figure 3).
These results indicated that the geographic distribu-

tion might be a limited factor to effect the codon usage
of the whole HBV coding sequence, and the subtypes
did not reflect the characteristic of HBV evolution to
some degree. In this case, the codon usage variation
might be one of factors to drive HBV evolution.
The effect of mutation pressure on codon usage of HBV
To analyze if the evolution of HBV is shaped by muta-

tion pressure from virus itself or by translation selection
from host, G+C content at the first and second codon
positions (GC12%) was compared with that at synon-
ymous third codon positions (GC3%) (Figure 4).
A highly significant correlation was observed (r =

0.432, P < 0.01), implying that mutation pressure from
base composition of HBV is a main factor in shaping
genetic diversity of this virus, since the effects are pre-
sent at all codon positions. In addition, the ENC values
were calculated for each strain and the plot was made
by ENC value against GC3% (Figure 5).
The Figureure 5 represented that the plots of HBV

aggregated below the expected curve, suggesting other
selections take part in the process of HBV evolution.

Table 2 The relationship of the synonymous codon usage
pattern between HBV and human cell

Codon/Amino acid HBV Humana

TTT(F) 1.06 0.87

TTC(F) 0.94 1.13

TTA(L) 0.67 0.39

TTG(L) 1.08 0.73

CTT(L) 1.11 0.73

CTC(L) 1.22 1.22

CTA(L) 0.85 0.40

CTG(L) 1.06 2.53

ATT(I) 1.27 1.04

ATC(I) 1.26 1.52

ATA(I) 0.48 0.44

GTT(V) 1.27 0.69

GTC(V) 0.91 1.00

GTA(V) 0.65 0.42

GTG(V) 1.17 1.90

TCT(S) 1.69 1.11

TCC(S) 1.48 1.39

TCA(S) 1.28 0.84

TCG(S) 0.58 0.33

AGT(S) 1.48 0.84

AGC(S) 1.01 1.50

CCT(P) 0.99 1.12

CCC(P) 0.51 1.35

CCA(P) 1.37 1.07

CCG(P) 1.38 0.46

ACT(T) 0.89 0.94

ACC(T) 0.37 1.52

ACA(T) 1.32 1.07

ACG(T) 1.24 0.46

GCT(A) 0.99 1.09

GCC(A) 0.45 1.64

GCA(A) 1.27 0.85

GCG(A) 0.73 0.42

TAT(Y) 1.05 0.84

TAC(Y) 0.95 1.16

CAT(H) 1.21 0.81

CAC(H) 0.79 1.19

CAA(Q) 1.08 0.51

CAG(Q) 0.92 1.49

AAT(N) 1.36 0.89

AAC(N) 0.64 1.11

AAA(K) 0.73 0.82

AAG(K) 1.27 1.18

GAT(D) 1.04 0.89

GAC(D) 0.96 1.11

GAA(E) 1.23 0.81

Table 1 The overall nucleotide contents and nucleotide
contents at the synonymous third position of sense
codons in the whole coding sequence of HBV (Continued)

50 27.43 27.93 21.98 22.66 29.21 26.91 21.19 22.68

51 27.41 27.95 21.92 22.73 29.33 26.66 21.26 22.75

52 27.45 27.99 21.86 22.71 29.52 26.72 21.01 22.75

53 27.49 27.95 21.84 22.73 29.52 26.60 21.26 22.62

54 27.64 27.97 21.83 22.56 29.44 27.23 20.85 22.49

55 27.45 27.91 21.96 22.68 29.33 26.72 21.32 22.62

56 27.41 27.91 22.04 22.64 29.40 26.72 21.44 22.44

57 27.60 28.50 21.87 22.04 29.27 27.73 21.05 21.95

58 27.79 28.33 22.20 21.68 29.80 27.41 21.55 21.24
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Comparative analysis of the RSCU values between HBV
and human cell
There is a resemblance of synonymous codons usage
pattern between this virus and human cell, for example,
the similar synonymous codon usage pattern includes all
synonymous codons for Phe, Ile, Val, Ser, Ala, Tyr, His,
Lys, Asp, Cys and Gly (Table 1). This may be explained
that the codon usage of HBV adapting to its host under
translation selection could result in the multiplication of
progeny virus. This phenomenon possibly implies that
the resemblance of codon usage is favorable for HBV
replication in human cells. But if compared with the
under-represented codons in human cells, CCG for Pro,
ACG for Thr, CAA for Gln and CUA for Leu in HBV
are highly used (Table 1). The result suggested that
these codons could influence the translational rate of
the context flanking them, resulting in the viral product
correct fold.

Table 2 The relationship of the synonymous codon usage
pattern between HBV and human cell (Continued)

GAG(E) 0.77 1.19

TGT(C) 0.80 0.86

TGC(C) 1.06 1.14

CGT(R) 0.48 0.51

CGC(R) 0.78 1.20

CGA(R) 0.61 0.63

CGG(R) 0.37 1.20

AGA(R) 1.49 1.20

AGG(R) 1.39 1.26

GGT(G) 0.60 0.64

GGC(G) 0.81 1.40

GGA(G) 1.36 0.98

GGG(G) 1.22 0.98
a the synonymous codon usage pattern of human cell was calculated based
on the data of the synonymous codon usage frequencies of human cell.

Figure 1 The genetic characteristic of HBV isolated different countries.
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Figure 2 The genetic characteristic of HBV based on the main four subtypes.

Figure 3 The genetic characteristic of HBV based on different genotypes.
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Discussion
The ENC values calculated for HBV indicated that
although a significantly lower bias of codon usage exists
in HBV, the codon usage is not mainly affected by
mutation pressure. As for some viruses, previous study
reported that the major factor in shaping codon usage
patterns appears to be mutation pressure rather than
natural selection [19,21,24,35]. However, the comparison
of the synonymous codon usage between HBV and
human cells suggested that the interaction of mutation
pressure with translation selection exists in the process
of HBV evolution, although ENC values for the whole
HBV coding sequence to represent mutation pressure is
one of the factors in influencing codon usage pattern.
This characteristic of HBV confers adaptive advantages
which result in a highly efficient dissemination of the
virus through different ways of transmission.
The pattern of codon usage is a genetic characteristic

of various organisms in Previous study [19,20,27,
31,32,35,36]. Because C%, U%, U3% and C3% play roles

in the formation of the different optimal codons with
any nucleotide-ended, the codon usage pattern of HBV
is likely influenced by composition constraints. The
codon usage pattern of PV is mostly coincident with
that of its host, while the codon usage pattern of HBV
is antagonistic to that of its host [37,38]. The codon
usage pattern of HBV is a mixture of the two types of
codon usage. The coincident portion of codon usage
pattern for HBV enables the corresponding amino acids
to be translated rapidly, the other antagonistic portion
of codon usage pattern likely enable viral proteins to be
folded properly, although the translation efficiency of
the corresponding amino acids is decreased. Latent
genes in Epstein-Barr virus deoptimize codon usage in
order to evade competition for host protein translation
[28] and attenuation of PV activity was performed by
rare codon pairs inducing poor translation for sequences
of viral proteins [27]. These results suggested that disfa-
vored codons coding for amino acids may not be a dele-
terious factor for viruses to adapt to its host cells.

Figure 4 Correlation between GC content at first and second codon positions (GC2%) with that at synonymous third codon
positions (GC3%).

Ma et al. Virology Journal 2011, 8:544
http://www.virologyj.com/content/8/1/544

Page 6 of 10



According to the data of codon usage pattern of HBV
isolated from different countries, the geographic factor
fails to influence the formation of codon usage pattern
of HBV. After all, with development of international
communication and highly efficient dissemination of
HBV through various approaches of transmission, the
affection of geographic factor seems to be weak on the
limitation of HBV distribution in different countries. It
is interesting that the main four subtypes of HBV have
no significant difference in genetic characteristic shaped
by different human races. This result might suggested
that translation selection from human is not a single
factor to shape the overall codon usage pattern of this
virus and mutation pressure from HBV itself is a main
force to drive HBV evolution. Genotyping of HBV is of
high interest because there is increasing evidence that
HBV genotypes may be associated with HBeAg sero-
conversion rates, mutation occurring in the procure and
core promoter region, severity of liver disease and treat-
ment response [15,16,39,40]. There is a significant dif-
ference of the overall codon usage pattern of HBV
between genotypes A, B, E and C, D, G. HBV genotypes

and subgenotypes have been associated with differences
in clinical and virological characteristics, showing that
they may play a role in the virus-host relationship [41].
It has been shown that genotypes C and D are asso-
ciated with more serious liver injuries and with a higher
incidence of HCC than genotypes A and B [42-44]. In
addition, genotype C and D have a much lower rate in
response to interferon therapy than those infected with
A or B genotypes [40,45]. Moreover, subtle differences
in frequency and type of lamivudine resistant variants
occur in genotype A and D infectious [15]. An evolu-
tionary approach to HBV infection, based on the princi-
ples of natural selection, may offer explanation for how
modes of transmission may favor some genotypes and
subgenotypes over others and influence HBV virulence.
The genetic diversity and codon usage patterns we

proposed here are helpful to understand the processes
of HBV evolution, especially the roles played by transla-
tion selection from host and mutation pressure from
virus. Additionally, such information might benefit to
understand the roles of geographic and subtype factors
in influencing the process of HBV evolution.

Figure 5 Distribution of the codon usage index, ENC, and GC content at synonymous third codon positions (GC3%). The curve shows
the expected codon usage of GC compositional constraints alone account for codon usage bias.
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Materials and methods
Sequence data
The 58 complete RNA sequences of HBV were down-
loaded from the National Center for Biotechnology
Information (NCBI) http://www.ncbi.nlm.nih.gov/Gen-
bank/ and detailed information about the viruses were
listed in Table 3
Each general nucleotide composition (U%, A%, C% and

G%) and each nucleotide composition in the third site of
codon (U3%, A3%, C3% and G3%) in HBV coding sequence
were calculated by biosoftware DNAStar 7.0 for windows.

The calculation of the relative synonymous
codon usage (RSCU)
The relative synonymous codon usage (RSCU) values for
the whole 58 coding sequence of HBV were calculated
as previously described [46]. RSCU values do not
depend on the factors of amino acid composition and
the size of the coding sequence, because the two factors
can be eliminated in the process of calculation. When
RSCU value is equal to 1.0, it means that this codon is
chosen equally and randomly. The RSCU value for a
synonymous codon more than 1.0 or less than 1.0 indi-
cates the more frequency or less frequency, respectively.
The synonymous codons with RSCU more than 1.6
were thought to be over-represented, while the synon-
ymous codons with RSCU less than 0.6 were regarded
as under-represented [47].

Analysis of codon usage bias
The ‘effective number of codons’ (ENC), the useful esti-
mator of absolute codon usage bias, was a measure
quantifying the codon usage bias of the whole coding
sequence of HBV. The ENC value ranges from 20
(when only one synonymous codon is chosen by the
corresponding amino acid) to 61 (when all synonymous
codons are used equally) [48]. In this study, this mea-
sure was used to evaluate the degree of codon usage
bias of coding sequences for HBV.

Principal component analysis
Principal component analysis (PCA), which was a com-
monly used multivariate statistical method [24], was car-
ried out to analyze the major trend in codon usage
pattern among different strains of HBV. PCA involves a
mathematical procedure that transforms some correlated
variable (RSCU values) into a smaller number of uncor-
related variables called principal components. Each
strain was represented as a 59 dimensional vector, and
each dimension corresponded to the RSCU value of
each sense codon, which only included several synon-
ymous codons for a particular amino acid, excluding the
codon of AUG, UGG and three stop codons.

Table 3 The information of HBV strains in this study

No. Accession No. f’1a f’2a ENC value

1 AF405706 -0.79 1.32 56.41

2 X04615 -0.82 0.50 55.88

3 AB033554 -1.11 -0.90 55.78

4 AY741798 -0.82 1.31 56.17

5 AY741797 -0.82 1.15 55.82

6 AY741796 -0.72 1.23 56.62

7 AY741795 -0.75 1.26 56.59

8 AY741794 -0.73 1.26 56.61

9 AF100309 -1.02 -1.17 55.92

10 M57663 0.87 -1.05 55.48

11 AF100308 -1.16 -1.69 55.70

12 U87747 -0.38 -0.96 57.29

13 U87746 0.49 -0.27 55.71

14 AY123041 -0.69 0.77 55.94

15 AF068756 -0.48 0.70 56.39

16 AF282918 -0.84 -1.22 55.98

17 U95551 -0.99 0.62 56.36

18 GQ872210 -0.02 1.01 56.07

19 GQ161818 0.54 0.11 56.88

20 GQ161805 0.56 0.08 56.87

21 GQ161799 0.56 0.11 56.88

22 AY796032 -0.49 1.42 56.08

23 AY796031 -0.43 1.17 56.08

24 AY796030 -0.47 0.68 56.67

25 AF282917 -1.07 -1.45 55.70

26 AY233296 -0.07 1.39 55.62

27 AY23329 -0.38 1.30 56.04

28 AY233294 -0.33 1.62 55.95

29 AY233293 -0.39 1.51 55.92

30 AY233291 -0.45 1.29 55.95

31 AY233290 1.42 0.25 56.75

32 AY233289 1.57 -0.49 56.66

33 AY233288 1.39 -0.33 56.84

34 AY233287 1.55 -0.14 56.82

35 AY233286 1.03 0.00 56.78

36 AY233285 1.26 -0.54 56.52

37 AY233284 1.38 -0.24 56.78

38 AY233283 1.49 -0.45 56.54

39 AY233282 1.35 -0.17 56.73

40 AY233281 1.31 -0.08 56.95

41 AY233280 1.19 0.18 56.82

42 AY233279 1.34 0.04 56.90

43 AY233278 0.86 -0.56 56.37

44 AY233277 1.55 -0.15 56.88

45 AY233276 1.38 -0.38 56.83

46 AY233275 1.87 0.03 56.79

47 AY233274 1.34 -0.30 56.60

48 AY233273 -0.49 -0.80 56.45

49 DQ448628 -1.07 -1.31 55.84

50 DQ448627 -1.07 -1.56 55.84

51 DQ448625 -1.07 -1.56 55.68
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Correlation analysis
The relationship between each general nucleotide com-
position (U%, A%, C% and G%) and each nucleotide
composition in the third site of codon (U3%, A3%, C3%
and G3%) in HBV coding sequence and the relationship
between U3%, A3%, C3%, G3% and the coodn usage pat-
tern of HBV were evaluated by the Pearson’s rank.
All statistical processes were carried out by statistical

software SPSS11.5 for windows.
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