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Abstract
Background: Influenza epidemics continue to cause morbidity and mortality within the human
population despite widespread vaccination efforts. This, along with the ominous threat of an avian
influenza pandemic (H5N1), demonstrates the need for a much improved, more sophisticated
influenza vaccine. We have developed an in vitro model system for producing a membrane-bound
Cytokine-bearing Influenza Vaccine (CYT-IVAC). Numerous cytokines are involved in directing
both innate and adaptive immunity and it is our goal to utilize the properties of individual cytokines
and other immunomodulatory proteins to create a more immunogenic vaccine.

Results: We have evaluated the immunogenicity of inactivated cytokine-bearing influenza vaccines
using a mouse model of lethal influenza virus challenge. CYT-IVACs were produced by stably
transfecting MDCK cell lines with mouse-derived cytokines (GM-CSF, IL-2 and IL-4) fused to the
membrane-anchoring domain of the viral hemagglutinin. Influenza virus replication in these cell lines
resulted in the uptake of the bioactive membrane-bound cytokines during virus budding and
release. In vivo efficacy studies revealed that a single low dose of IL-2 or IL-4-bearing CYT-IVAC is
superior at providing protection against lethal influenza challenge in a mouse model and provides a
more balanced Th1/Th2 humoral immune response, similar to live virus infections.

Conclusion: We have validated the protective efficacy of CYT-IVACs in a mammalian model of
influenza virus infection. This technology has broad applications in current influenza virus vaccine
development and may prove particularly useful in boosting immune responses in the elderly, where
current vaccines are minimally effective.

Background
Influenza epidemics continue to cause morbidity and
mortality within the human population. Yearly epidemics
affect 5–20% of the population leading to over 200,000
hospitalizations and up to 36,000 deaths annually in the

United States [1]. The economic impact of influenza
related illness costs the United States upwards of $167 bil-
lion dollars per year [1]. The recent emergence of highly
pathogenic avian influenza (HPAI) H5N1 has signifi-
cantly raised awareness and concern of a pending pan-
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demic flu event. Prior to 1997, it was thought that HPAI
circulating in avian species could not be directly transmit-
ted to humans. However, recent studies have documented
that HPAI can cross the avian-human species barrier and
infect humans, leading to disease and high mortality
(50%) [2-4]. Furthermore, recent incidences of low-grade
human-to-human transmission of H5N1 have heightened
concerns that an H5N1 pandemic may occur [5]. Contin-
ual yearly outbreaks of influenza and the looming threat
of a potential influenza pandemic illustrate the growing
need for improved influenza vaccines.

The ability of adjuvants to enhance vaccine efficacy have
been well documented, yet the current commercially
available influenza vaccines in the United States do not
utilize any licensed form of adjuvant. Oil adjuvants, such
as incomplete Freund's adjuvant, have long been known
to boost the immune response to co-administered anti-
gens; however these oil-based adjuvants are not ideal
adjuvant candidates due to potential side effects [6].
Recent studies have begun to look at other methods of
boosting the immune response to influenza antigens
using adjuvants such as alum, MF59, and Quil A, as well
as Influenza-Immunostimulating Complex (ISCOM), an
immune complex comprised of influenza antigen, choles-
terol, lipid, and saponins [7-10].

Immunomodulatory proteins such as cytokines and
chemokines have been evaluated for their ability to aug-
ment vaccine immunogenicity in numerous vaccine can-
didates. Cytokines and chemokines such as RANTES, IL-
12, IL-6, and GM-CSF, delivered as either soluble protein
or plasmid expression vector, have proven to boost the
immune responses to co-administered antigens [11-13].
While the adjuvant potential of cytokines and chemok-
ines are clearly demonstrated in these studies, two major
problems arise for those vaccines using soluble forms of
cytokines and chemokines, (1) dispersion of the protein
from the site of administration and (2) the short half-life
of the protein. It has been suggested that immunomodu-
lators may function better if they are maintained in close
proximity or juxtaposed to antigens and remain in their
bioactive state for a longer period of time [14-17].
Recently, encapsulation or fusion of immunomodulators
(GM-CSF, IL-2) directly to the cognate antigen has been
shown to significantly augment immune responses [18-
21]. Clearly, presentation of immunomodulators in close
association with antigen greatly increases the immuno-
genicity of the antigen.

As a means to boost the immunogenicity of whole virus
vaccines or even subunit vaccines, we postulated that inac-
tivated virus particles bearing membrane-bound immu-
nostimmulatory molecules would elicit a more robust
and balanced humoral immune response to influenza

virus. Here, we describe studies demonstrating the ability
of CYT-IVACs (cytokine bearing influenza virus vaccines)
to boost antiviral humoral immune responses and protect
against lethal challenge using a mouse model of infection.

Methods
Construction of expression plasmids
Mouse-derived granulocyte macrophage-colony stimulat-
ing factor (mGM-CSF) and interleukin 2 and 4 (mIL-2,
mIL-4) were fused to a short stalk, transmembrane, and
cytoplasmic tail domain of influenza A/WSN/33 hemag-
glutinin (HA) using standard PCR methodologies as
described previously [22]. Briefly, primers, amplifying the
carboxyl terminal 71 amino acids of WSN HA and the
coding sequence of the cytokines, were designed to intro-
duce the appropriate restriction sites. Nucleotides 1521–
1730 coding for the 26 amino acid stalk region, the trans-
membrane domain, and cytoplasmic tail domain of the
hemagglutinin were amplified using the forward primer
5'-CCGGATCCAATGGGACTTATGATTATCC-3' and the
reverse primer 5'-CCGAATTCTCAGATGCATATTCT-
GCACTGC-3' to introduce restriction sites Bam HI and
Eco RI (underlined), respectively. Primers specific for
mGM-CSF (forward 5'-CCAAGCTTGGAGGATGTGGCT-
GCAGAA-3'; reverse 5'-GGGGATCCTTTTTGGACTGGTTT
TTTGC-3'), mIL-2 (forward 5'-CCGGTACCAGCAT-
GCAGCTCGCATCCTGTGTC-3'; reverse 5'-GGGGATC-
CTTGAGGGCTTGTTGAGATGA-3'), and mIL-4 (forward
5'-CCGGTACCGCACCATGGGTCTCAACCCCCA-3';
reverse 5'-CCGGATCCCGAGTAATCCATTTGCATGATG-
3') were designed to remove stop codons and introduce
Hind III (mGM-CSF) or Kpn I (mIL-2 and mIL-4) and
BamHI endonuclease restriction sites on the 5' and 3' ends
respectively. PCR products were generated using Platinum
Pfx (Invitrogen) and GeneAmp PCR System 2400
(Applied Biosystems). Purified PCR products were subse-
quently digested and inserted into the respective restric-
tion sites of pcDNA3.1 using T4 DNA Ligase (Invitrogen)
according to the manufacturers protocol. Plasmid con-
structs, harboring the respective fusion constructs, were
sequenced by the Wayne State University Sequencing
Core (Applied Genomics Technology Center) to verify
sequence and integrity of the constructs.

Generation of CYT-IVAC producer cell lines
Madin-Darby canine kidney (MDCK) cells were main-
tained in complete growth media (DMEM/10% FBS) con-
sisting of Dulbecco's Modified Eagles Media
supplemented with 10% fetal bovine serum (Atlanta Bio-
logicals) and the antibiotics penicillin/streptomycin (100
U/100 μg). Cells were transfected with expression plas-
mids using Lipofectamine2000 (Invitrogen) as described
previously [22]. Stable transfectants were selected by
growth in DMEM/10%FBS supplemented with Geneticin
(1.5 mg/ml; Gibco). Geneticin-resistant cells were sub-
Page 2 of 17
(page number not for citation purposes)



Virology Journal 2009, 6:42 http://www.virologyj.com/content/6/1/42
cloned by limiting dilution plating in 96-well plates in the
presence of Geneticin (G418™ Invitrogen, 1 mg/ml). Indi-
vidual MDCK subclones were screened for cell surface
expression and bioactivity of the respective membrane-
bound cytokines.

Viral infection, purification, and inactivation
Wild-type and CYT-IVAC producer MDCK cells (90% con-
fluent) were infected at an MOI of 1 with either influenza
virus A/PR/8/34 (H1N1) or A/Udorn/72 (H3N2). Follow-
ing virus adsorption (1 hr, 37°C), the inoculum was
removed and DMEM/2% FBS was added. Supernatants
from infected monolayers were harvested 24–36 hours
post infection and cellular debris was pre-cleared at 400 ×
g for 15 minutes at 4°C. Virions were purified by centrif-
ugation through two sequential 10–26% iodixanol con-
tinuous gradients (OptiPrep™, Axis-Schield) (SW41 rotor,
55,000 × g, 45 min at 4°C). Banded virus was collected
and concentrated by centrifugation at 88,000 × g for 45
minutes at 4°C and subsequently re-suspended in phos-
phate-buffered saline, PBS. Purified virus was inactivated
by treatment with 15 mM β-propiolactone for 15 minutes
at 25°C. The reaction was neutralized by the addition of
sodium thiosulfate (40 mM final concentration, 30 min,
25°C). Inactivated virus was diluted with PBS, pelleted by
centrifugation as described and resuspended in sterile
PBS. Total viral protein concentration was determined
using a bicinchoninic acid protein assay kit (Pierce Bio-
technology). Inactivation was confirmed by monitoring
cytopathic effect in MDCK cells treated with 5 μg of inac-
tivated virus vaccine for a period of 3–5 days at 37°C in
the presence of 1.5 μg/ml TPCK-treated trypsin (Sigma).

Cell surface expression and viral incorporation of 
membrane-bound cytokines (Immunofluorescence 
Microscopy)
MDCK cells were grown to 90% confluency on glass cover
slips in 24 well plates. Cells were washed with phosphate
buffered saline (PBS) and fixed with 3% paraformalde-
hyde (PF) in 250 mM HEPES for 10 minutes at room tem-
perature (RT). PF was removed and 50 mM glycine in PBS
was added for 10 minutes at RT to quench any remaining
PF. Cells were washed 2 times with PBS and blocked with
2% chicken serum in PBS for 30 minutes at RT. For immu-
nostaining cells were incubated sequentially with rat anti-
cytokine specific antibody (BD Pharmagen) and chicken
anti-rat IgG conjugated Alexa Fluor® 488 antibody (Invit-
rogen/Molecular Probes). All antibodies were diluted in
PBS/2% chicken serum. Cover slips were mounted on
slides using ProLong Antifade (Invitrogen/Molecular
Probes). Immunofluorescent staining was visualized
using a Nikon E800 Epifluorescence Microscope. Digital
images were captured using a Roper CoolSnap FX digital
camera and analyzed using MetaMorph Imaging Software
(Universal Imaging).

To visualize viral incorporation of membrane-bound
cytokines, CYT-IVAC producer cells, grown on cover slips,
were infected with filamentous influenza A/Udorn/72 at
an MOI of 1. The cells were fixed at 8 hr post-infection
with 3% PF and blocked as described above. Cells were
incubated with rat anti-cytokine specific primary antibody
and Alexa Fluor® 488 conjugated secondary antibody as
described above. Additionally, cells were incubated with
goat anti-H3 antibody and secondary chicken Alexa Fluor®

594 conjugated anti-goat IgG (Invitrogen/Molecular
Probes). Cover slips were mounted and immunofluores-
cence was analyzed as described above.

Western blot analysis
Vaccines were solubilized in Laemmli Buffer (BioRad)
(LB) and heated at 96°C for 10 minutes to denature pro-
teins. Samples were separated on 12% PAGE-SDS and
subsequently blotted to PVDF membrane. Membranes
were probed by sequential incubation with rat anti-GM-
CSF (BD Bioscience), followed by goat anti-rat IgG horse-
radish-peroxidase conjugated secondary antibody (Santa
Cruz). Membranes were exposed to ECL or Femto solu-
tion per manufacturers (Pierce) instructions and mem-
branes were visualized using Chemdoc XRS (BioRad).

Total Cytokine and Hemagglutinin Quantitation by Slot 
Blot Assay
Serial dilutions of vaccines at 1, 0.5 and 0.25 μg (cytokine
quantification) or 1, 0.2 and 0.04 μg (HA quantification)
of total viral protein, as well as serial diluted recombinant
cytokine (2000 ng to 1.95 ng) were blotted on PVDF
membranes using a slot blot apparatus. Membranes were
blocked with 5% milk solution and subsequently incu-
bated sequentially with diluted primary antibody, specific
for the respective cytokine (rat anti-GM-CSF, IL-2, or IL-4,
BD Bioscience) or hemagglutinin (mouse anti-HA, Merid-
ian Life Science® Inc or rabbit anti-H1N1/Pan H1, Pierce®

Inc) followed by the respective horseradish-peroxidase
conjugated secondary antibody (goat anti-rat IgG (Santa
Cruz), goat anti-mouse IgG (BioRad) or goat anti-rabbit
IgG (Sigma). Membranes were exposed to ECL or Femto
solution per manufacturers (Pierce®) instructions and
chemiluminescent signals were recorded using a Chem-
doc XRS (BioRad). Images were processed with ImageJ
software (NIH freeware) and standard curves for each
cytokine were generated using optical pixel densities.
Total cytokine content for each vaccine preparation was
extrapolated from standard curves and is expressed as the
average of the three dilutions evaluated for each vaccine in
nanograms (ng) of cytokine per microgram (μg) of total
viral protein. The signal intensity of the HA specific signal
for each vaccine was calculated for each dilution and the
average pixel density per μg of total viral protein is given.
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Hemagglutination Assay
Hemagglutination units (HAU) were determined by
agglutination of chicken red blood cells as previously
described [23]. Briefly, serial diluted vaccine preparations
were mixed with an equal volume of fresh 0.5% chicken
red blood cells and incubated at room temperature for 30
minutes. Red blood cell agglutination was recorded and
HAU per μg of total viral protein is expressed as the recip-
rocal of the last dilution of virus that resulted in aggluti-
nation.

Bioassays of membrane-bound cytokines
Bone marrow (BM) cells, as indicator cells for mGM-CSF
bioactivity, were prepared from the femurs of female
Balb/c mice. Briefly, bone marrow was flushed from the
femurs with RPMI and the cell suspension passed through
a 70 μm cell strainer. Red blood cells were lysed using RBC
lysis buffer (155 mM NH4Cl, 10 mM KHCO3, 0.01%
EDTA). Cells were washed 2 times with RPMI and re-sus-
pended in complete RPMI (10% FBS, 20 mM L-glutamine,
1 M HEPES, 100 mM Sodium Pyruvate, 55 μM 2β-Mer-
captoethanol, Penicillin/Streptomycin (100 units/100 μg/
ml)). For MDCK based bioassays, BM cells (2 × 105/well)
were added to wells of a 96 well plate containing 90%
confluent, mitomycin C (50 μg/ml) treated wild type or
CYT-IVAC producer (mGM-CSF~HA) MDCK cells. For
virus based bioassays and quantitation of viral incorpo-
rated bioactive GM-CSF, BM cells (2 × 105) or MPRO cells
(5 × 103) [24], respectively, were added to wells of a 96
well plate containing inactivated A/PR/8/34 wild type or
A/PR/8/34 mGM-CSF~HA. Recombinant GM-CSF was
also used to establish a standard curve by which virus-
incorporated bioactive GM-CSF could be quantitated.
Plates were incubated at 37°C for 72 hours (BM) or 48
hours (MPRO cells). For the last 18 hours of incubation
for the cell-based bioassay, cells were pulsed with 3H-thy-
midine then harvested and counted using a scintillation
counter. For the viral based bioassay, Alamar Blue® (Invit-
rogen) was added to each well at 10% of the total volume
for the last 24 hours and Alamar Blue® reduction was
determined from the absorbance values recorded at 570
nm and 600 nm after 72 (BM) or 48 (MPRO) hours.

CTLL-2 cells (a gift from Dr. Robert Swanborg, Wayne
State University) were used as indicator cells for the bioac-
tivity of mIL-2. Cells were maintained in complete RPMI
supplemented with recombinant mouse IL-2 (10 ng/ml).
CTLL-2 cells (5 × 103) were added to 96 well plates con-
taining mitomycin C treated cells (wild-type or mIL-2
CYT-IVAC producer cells) or inactivated virus (A/PR/8/34
wild-type or A/PR/8/34 mIL-2~HA) as described above.
Recombinant IL-2 was also used to establish a standard
curve by which virus-incorporated bioactive IL-2 could be
quantitated. Plates were incubated at 37°C for 48 hours.
For the last 18 hours of incubation for the cell-based bio-

assay, cells were pulsed with 3H-thymidine then harvested
and counted using a scintillation counter. For the virus
particle based bioassay, Alamar Blue® was added to each
well for the last 24 hours and absorbance was read at 570
nm and 600 nm after 48 hours.

CT.4s cells (gift from Dr. William Paul and Dr. Jane Hu-Li,
Laboratory of Immunology, National Institute of Health)
were used to determine mIL-4 bioactivity [25]. Cells were
maintained in complete RPMI supplemented with recom-
binant mouse IL-4 (2 ng/ml). CT.4s cells (5 × 103) were
added to 96 well plates containing mitomycin C treated
MDCK cells (wild-type or mIL-4 CYT-IVAC producer cells)
or inactivated virus (A/PR/8/34 wild-type or A/PR/8/34
mIL-4~HA) as described above. Recombinant IL-4 was
also used to establish a standard curve by which virus-
incorporated bioactive IL-4 could be quantitated. Plates
were incubated at 37°C for 48 hours. For the last 18 hours
of incubation for the cell-based bioassay, cells were pulsed
with 3H-thymidine, harvested and counted using a scintil-
lation counter. For the viral based bioassay, Alamar Blue®

was added to each well for the last 24 hours and absorb-
ance was read at 570 nm and 600 nm after 48 hours.

Standard curves for recombinant GM-CSF, IL-2 and IL-4
were deduced from the difference data of the 570 nm and
600 nm absorbance readings for each dilution of recom-
binant protein using Prism (GraphPad Software, Inc.).
Difference data, collected from various dilutions of GM-
CSF, IL-2, or IL-4-bearing CYT-IVAC preparations, was
applied to their respective standard curve for quantitation
of bioactive membrane-bound cytokine for each CYT-
IVAC on a per microgram basis.

Vaccination studies
Animal experiments were performed in accordance with
NIH guidelines and with approval by the Institutional
Animal Care and Use Committee of the Virginia State
University and Polytechnic Institute. Groups of 8–10
week old female Balb/c mice (NCI, Charles, River Labora-
tories) were immunized subcutaneously with 0.375 μg
total viral protein of β-propiolactone inactivated A/PR/8/
34 wild-type, A/PR/8/34 mGM-CSF~HA, A/PR/8/34 mIL-
2~HA, or A/PR/8/34 IL-4~HA diluted in PBS. PBS alone
acted as the negative vehicle control. Serum was collected
on day 21 post-vaccination by retro-orbital bleeding. Mice
were challenged with 1000 TCID50 of mouse-adapted
Influenza A/PR/8/34 (100 LD50) on day 35 post-vaccina-
tion. Weight loss and survival was monitored following
challenge.

Enzyme linked immunosorbent assay (ELISA)
Antiviral antibody levels in sera of vaccinated animals
were determined by a standard enzyme-linked immuno-
sorbent assay using whole virus as the coating antigen.
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Briefly, Immuno Plates (Nunc) were coated with 10
hemagglutination units (HAU) of inactivated A/PR/8/34
in coating buffer (sodium bicarbonate, pH 9.6) and
blocked overnight at 4°C in PBST buffer (phosphate buff-
ered saline with 0.05% Tween 20) supplemented with 2%
BSA. Plates were washed 3 times with wash buffer (PBS
containing 0.05% Tween 20). Serum samples, collected
on day 21 post vaccination, were added to wells of ELISA
plates and plates were incubated with shaking overnight
at 4°C. Plates were washed 3 times with PBST. Horserad-
ish Peroxidase (HRP) conjugated secondary antibody
(anti-mouse IgG, IgG1, or IgG2a; Southern Biotech),
diluted in PBST with 2% BSA, was added and plates were
incubated with shaking for 1.5 hours at RT. Plates were
washed 3 times with wash buffer and wells were incu-
bated with substrate (2,2'-Azino-Bis(3-Ethylbenzthiazo-
line-6-Sulfonic Acid; Sigma) for 30 minutes at RT,
followed by the addition of 1% SDS to stop the reaction.
Absorbance was measured at 405 nm using a plate reader
(SpectraFluor Plus, Tecan) and O.D. readings were plotted
against a standard curve to determine the amount of influ-
enza specific antibody per milliliter of serum.

Microneutralization Assay for determination of virus 
neutralizing antibody titers
Neutralizing antibody titers were determined for serum
samples collected from mice on day 21 post-vaccination
as described in the WHO Manual on Animal Influenza
Diagnosis and Surveillance [26]. Briefly, two-fold serial
dilutions of serum in PBS were incubated with 100
TCID50 of influenza A/PR/8/34 for 1 hour at room tem-
perature. The serum/virus cocktail was added to MDCK
cells for 1 hour at 37°C. Serum/virus cocktail was
removed and cells were incubated for 3 days at 37°C in
the presence of 1.5 μg/ml TPCK-treated trypsin (Sigma).
Neutralizing titer was determined to be the reciprocal of
the last dilution of serum that protected MDCK cells from
cytopathic effect.

Quantitation of viral loads in lungs
Viral loads in the lung tissue of vaccinated mice were
determined by collecting lungs on day 4 post-challenge.
Lungs were weighed and flash frozen in DMEM with liq-
uid nitrogen. Lung tissue was homogenized, pelleted and
supernatants were collected. Lung homogenates were
brought to equal volume with DMEM. Viral titers of lung
homogenates were determined from serial 10-fold sample
dilutions and incubation with MDCK cells for 1 hour at
37°C to allow for virus adsorption. Subsequently, cells
were washed and incubated for 3 days at 37°C in the pres-
ence of 1.5 μg/ml TPCK-treated trypsin (Sigma) and cyto-
pathic effects were recorded. Viral loads were reported as
50% tissue culture infectious dose units (TCID50/ml) as
determined by the Reed-Muench method [27].

Statistics
Statistical analysis using Prism software (Graphpad) was
conducted with the help of Dr. Stephen Were (statistician
for VA-MD Regional College of Veterinary Medicine).
ELISA antibody titer data was analyzed by One-way
ANOVA on normalized log transformed data using Dun-
nett's multiple comparison test with PR/8/34 wild-type
group as the control. Comparison of survival curves was
analyzed using Fisher's exact test.

Results
Establishment of CYT-IVAC producer cell lines for the 
production of Cytokine-Bearing Influenza Vaccines (CYT-
IVACs)
We have previously described an in vitro cell culture plat-
form that allows for the direct incorporation of mem-
brane-bound forms of chicken-derived cytokines into
virus particles [22]. Preparation of these cytokine-bearing
influenza virus vaccines, or CYT-IVACs, requires that the
cytokine or immunomodulator of choice be both
anchored in the virion membrane, and efficiently pack-
aged into virions as they are released from the infected
host cell. Further, the membrane-bound immunomodu-
lator must retain its bioactivity. To ensure successful
membrane anchoring and virion packaging, a gene encod-
ing for full-length cytokine (including its signal sequence)
is fused inframe to a gene segment encoding a short extra-
cellular stalk domain, the transmembrane spanning and
the cytoplasmic tail domains of the influenza virus
hemagglutinin. Alternatively, genes encoding mature sol-
uble forms of cytokines or chemokines can be fused
inframe to the N-terminal encoding cytoplasmic tail,
membrane-spanning and short stalk domains of the viral
neuraminidase [22].

In the present study, mouse derived IL-2, IL-4 and GM-
CSF were fused inframe to the C-terminal portion of the
hemagglutinin and inserted into the mammalian expres-
sion vector pcDNA3.1 (Invitrogen) under control of the
CMV promoter element; pcDNA3.1~mIL-2/HA, ~mIL-4/
HA and ~mGM-CSF/HA respectively. Following establish-
ment of stable MDCK transfectants expressing the mem-
brane-bound cytokines, cell surface expression was
confirmed by immunofluorescence microscopy using
cytokine-specific antibodies. As depicted in Figure 1, cell
surface expression of GM-CSF/HA, IL-2/HA or IL-4/HA
could be readily demonstrated in MDCK cells stably trans-
fected with the respective expression constructs (Figure.
1D, E, and 1F respectively). Positive staining was absent in
vector control MDCK transfected cells using each the
cytokine specific antibodies (Figure. 1A, B, and 1C). Sta-
ble MDCK transfectants were subcloned by limiting dilu-
tion to ensure maximal surface expression of the fusion
constructs and further selected based upon i) cell surface
expression of the membrane-bound cytokines, and ii) cell
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surface bioactivity of the specific membrane-bound
cytokines as further described below.

Membrane-bound cytokine bioactivity was determined
using specific cell-based bioassays in which MDCK trans-
fectants, wild-type or subclones of membrane-bound
cytokine producing cells, were incubated with cytokine
specific indicator cells (Figure 2). Bioactivity or prolifera-
tion was based on the incorporation of 3H-thymidine. All
three stably transfected MDCK cell lines expressing either
mGM-CSF/HA, mIL-2/HA, or mIL-4/HA induced the pro-
liferation of their respective indicator cell line at levels
well above background (indicator cells alone). Vector
control or wild-type MDCK cells failed to induce signifi-
cant proliferation of indicator cell lines. These results con-
firm that the mGM-CSF, mIL-2, and mIL-4 fusion
constructs are expressed in a bioactive form on the cell
surface of our CYT-IVAC producer cells.

Viral incorporation of membrane-bound cytokines
Our goal in this study was to produce inactivated whole
virus vaccines, which exhibit immunopotentiating capac-
ity compared to standard, unadjuvanted influenza whole
virus vaccine. In order for membrane-bound cytokines to
serve as immunopotentiating adjuvants they must first be

packaged efficiently into budding virions, and subse-
quently retain their bioactivity following inactivation of
the virus particles. To confirm packaging of membrane-
bound cytokines into virions, we initially took advantage
of our work with filamentous strains of influenza virus
[28-30]. Filamentous strains allow for visualization of
virus particles budding from infected cells or of virions
released into the extracellular media using indirect
immunofluorescence microscopy techniques. To assess
whether membrane-bound cytokines at the surface of
MDCK cells were incorporated into budding virions, sta-
ble MDCK transfectants were infected with filamentous
influenza A/Udorn/72 (H3N2) virus and at 8 hours post-
infection, fixed and immunostained with antibodies spe-
cific for the respective cytokines or for the viral hemagglu-
tinin glycoprotein (HA). As demonstrated in Figure 3 (A–
D), budding filamentous virions clearly incorporated
membrane-bound GM-CSF when propagated in infected
MDCK~GM-CSF/HA expressing cells. Co-localization
(yellow fluorescence) was evident indicating that both
membrane-bound GM-CSF and full-length, virally
encoded HA were incorporated into budding viral fila-
ments. Importantly, localization of GM-CSF/HA and full
length HA was also confirmed on virions collected from
the supernatants of infected producer cells (Figure 3D).

Cell surface expression of membrane-bound immunomodulator fusion constructsFigure 1
Cell surface expression of membrane-bound immunomodulator fusion constructs. Cell surface immunofluorescent 
staining of wild-type MDCK cells (A, B, C) and MDCK CYT-IVAC producer cells expressing membrane-bound mouse GM-
CSF/HA (D), IL-2/HA (E), or IL-4/HA (F). Paraformaldehyde fixed cells were labeled using rat anti-GM-CSF (A, D), anti-IL2 (B, 
E) or anti-IL4 (C, F) specific antibodies followed by Alexa Flour® 488 conjugated secondary antibody.
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To further confirm cytokine incorporation into virions,
virus harvested from infected producer cells was gradient-
purified and inactivated with β-propiolactone. Complete
virus inactivation was confirmed using a tissue culture
infectious dose assay, which monitors virus induced cyto-
pathicity or production of hemagglutinating virus parti-
cles. None of the inactivated CYT-IVACs (5 μg of purified
virus) resulted in the production of hemagglutinating
virus particles or cytopathic effect in wild-type MDCK cells
over a 5 day monitoring period. Western blot analysis and
slot blot assays were performed on gradient purified CYT-
IVACs to further verify cytokine incorporation and to
quantitate the total amount of virus-incorporated
cytokine, respectively. In addition, the HA content of gra-
dient purified wild-type and CYT-IVAC vaccine prepara-
tions was evaluated using slot blot and hemagglutination
assays to rule out any potential adverse effects on packag-
ing of full-length viral HA. As depicted in Figure 3E using
western blot analysis, the presence of mGM-CSF/HA was
detected only in progeny virions harvested from A/PR/8/
34 infected mGM-CSF/HA producer MDCK cells and not
in virions collected from A/PR/8/34 infected wild-type
MDCK cells. GM-CSF was detectable in as little as 0.268
μg of total viral protein. Using standard curves derived
from slot blots of recombinant GM-CSF, IL-2 or IL-4, we
were further able to quantitate the amount of virus-incor-
porated cytokine for each CYT-IVAC (Table 1). The GM-
CSF and IL-4-bearing CYT-IVACs incorporated relatively
high levels of membrane-bound cytokines, 185 ng GM-
CSF and 176 ng IL-4 per μg of vaccine respectively, com-
pared to the IL-2-bearing CYT-IVAC, only 4.924 ng IL-2
per μg of vaccine. Due to lack of a suitable HA standard for
A/PR/8/34 hemagglutinin, we were unable to precisely
quantitate the viral HA content. However, we were able to
compare the relative HA amounts based on optical den-
sity scans of western or slot blot assays in which equal
amounts of purified viral protein were loaded. Using this
approach, the HA content across vaccine preparations did
not differ significantly when equal amounts of viral pro-
tein were probed with either monoclonal or polyclonal
antibodies specific for H1 hemagglutinin (Table 1). Addi-

Figure 2

Membrane-bound immune-modulators are bioactive on the surface of MDCK CYT-IVAC producer cellsFigure 2
Membrane-bound immune-modulators are bioactive 
on the surface of MDCK CYT-IVAC producer cells. 
Mitomycin C treated subclones (SC) or FACS sorted (sort) 
CYT-IVAC producer cells expressing murine GM-CSF (A), 
IL-2 (B), or IL-4 (C) or wild-type MDCK cells were co-cul-
tured with cytokine specific indicator cells, bone marrow 
(BM), CTTL-2 and CT.4s respectively. Proliferation of 
cytokine responsive cell lines was measured by 3H-thymidine 
incorporation. Recombinant protein was used as positive 
control.
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tionally, hemagglutination units per μg of viral protein for
wild-type and CYT-IVAC vaccines did not differ signifi-
cantly, indicating comparable relative full-length HA con-
tent for wild-type and CYT-IVAC vaccines (Table 1).

In these latter studies, influenza virus A/PR/8/34, a spher-
ical particle-producing virus, was used to prepare vaccines.
Thus, incorporation of membrane-bound cytokine is nei-
ther restricted to a morphological phenotype nor a partic-

ular influenza virus subtype. Additional studies in our
laboratory have further confirmed membrane-bound
cytokine incorporation using H6N2 avian strains of influ-
enza virus for the infection (data not shown).

Bioacitivty of membrane-bound cytokines following viral 
inactivation
Inactivated, gradient purified CYT-IVACs were subse-
quently analyzed by bioassay using the appropriate indi-

Membrane-bound immunomodulators are incorporated during budding and release of virions from influenza virus infected cellsFigure 3
Membrane-bound immunomodulators are incorporated during budding and release of virions from influenza 
virus infected cells. MDCK CYT-IVAC producer cells infected with filamentous influenza virus A/Udorn/72 were stained at 
8 hr post-infection with antibodies specific for mGM-CSF (A, green) and hemagglutinin (B, red). Images A and B are overlaid to 
depict co-localization of mGM-CSF and full-length HA to budding viral filaments (C). Released virus particles collected from 
supernatants of infected CYT-IVAC producer cells stained for GM-CSF and HA as described above (D). Western blot of gradi-
ent purified virus derived from GM-CSF/HA expressing MDCK cells or wild-type MDCK cells (E) and probed for the presence 
of GM-CSF.

Table 1: Characterization of CYT-IVAC hemagglutinin and cytokine content

Vaccine HA pixel density* HAU/μg of vaccine Total cytokine 
(ng/μg vaccine)**

Bioactive cytokine 
(pg/μg vaccine)***

PR/8/34 w.t. 5835.4 16 NA NA
PR/8/34 GM-CSF/HA 6407.9 16 185 ± 21 87.3
PR/8/34 IL-2/HA 5562.9 32 4.92 ± 0.3 411
PR/8/34 IL-4/HA 6090.4 32 176 ± 24 456

* Pixel density of HA specific chemiluminescent signal following equal loading of total viral protein
** Quantitation of virus-incorporated cytokine on protein level based on standard curve of recombinant cytokine (ng of cytokine per ug of vaccine)
*** Quantitation of virus-incorporated cytokine on bioactive level based on standard curve of recombinant cytokine (pg of cytokine per ug of 
vaccine)
Page 8 of 17
(page number not for citation purposes)



Virology Journal 2009, 6:42 http://www.virologyj.com/content/6/1/42
cator cells. Wild-type inactivated virus harvested from
vector control MDCK cells was used as a negative control
and proliferation was monitored by either 3H-thymidine
incorporation or reduction of Alamar Blue®. Alamar Blue®

is a safe, non-radioactive alternative to3H-thymidine and
it has been proven to be as sensitive and reproducible, in
proliferation assays, as3H-thymidine [31]. As depicted in
Figure 4, CYT-IVACs bearing mGM-CSF/HA, mIL-2/HA,
and mIL-4/HA, all retained their bioactivity following β-
propiolactone inactivation inducing significant prolifera-
tion of their respective indicator cell lines compared to
wild-type inactivated virus. In addition to the above-men-
tioned quantitation of virus-incorporated cytokine by slot
blot assays, we thought it necessary to quantitate the bio-
logically active membrane-bound cytokine to better indi-
cate the dose of cytokine delivered during vaccination.
Despite the relatively low level of virus-incorporated IL-2
compared to IL-4, the amount of biologically active IL-2
and IL-4 present in the respective CYT-IVACs was compa-
rable at 0.411 ng IL-2 and 0.456 ng IL-4 perμg of vaccine,
respectively (Table 1). In contrast, the amount of bioac-
tive membrane-bound GM-CSF for the GM-CSF CYT-
IVAC was considerably lower (87.3 pg perμg of vaccine)
despite the relatively high level of virus-incorporated GM-
CSF as determined by the slot blot assay (Table 1).

To verify that positive bioassays were due to the presence
of bioactive cytokines we included non-specific CYT-
IVACs and cytokine-neutralizing antibodies in our evalu-
ation. The IL-2 and IL-4 bioassays were shown to be spe-
cific for their respective cytokines as the IL-4 CYT-IVAC
failed to induce significant proliferation of IL-2 depend-
ent CTLL-2 cells (Figure 5A) and similarly, the IL-2 CYT-
IVAC failed to induce the proliferation of IL-4 dependent
CT.4s cells (Figure 5B). Furthermore, the addition of neu-
tralizing anti-IL-2 antibodies to the culture media reduced
proliferation of IL-2 CYT-IVAC stimulated CTLL-2 cells in
a dose dependent manner (Figure 5C).

CYT-IVACs enhance serum anti-viral antibodies and skew 
immune response toward Th1 mediated immunity
To evaluate the adjuvant potential of our CYT-IVACs, we
vaccinated groups of Balb/c mice with CYT-IVACs or wild-
type vaccine administered subcutaneously (s.c.). In pilot
studies, we determined the dose of inactivated, wild-type
A/PR/8/34 vaccine that results in seroconversion and pro-
tection against lethal challenge in 20% of mice, the 20%
mouse protective dose (MPD20). This dose (0.375 μg) was
chosen in order to evaluate subtle immunopotentiating
responses induced by our CYT-IVACs. Importantly, we
chose not to include a boosting dose so that we could
determine whether single dose vaccination with CYT-
IVACs offered more protection than wild-type vaccine. It
should also be noted that no adjuvant other than the par-
ticulate matter of the vaccine itself or the incorporated

Membrane-bound immunomodulators retain bioactivity fol-lowing viral inactivationFigure 4
Membrane-bound immunomodulators retain bioac-
tivity following viral inactivation. Cytokine specific indi-
cator cell lines (bone marrow cells, BM; CTTL-2; or CT.4s) 
were incubated with decreasing concentrations of β-propiol-
actone inactivated wild-type vaccine or GM-CSF CYT-IVAC 
(A), IL-2 CYT-IVAC (B) or IL-4 CYT-IVAC (C). Proliferation 
was determined by Alamar Blue® reduction. Recombinant 
protein was used as the positive control.
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cytokine was administered. Blood was collected from
mice at day 21 post-vaccination and sera were evaluated
by ELISA against whole viral antigens to determine elic-
ited anti-viral antibody titers. Following subcutaneous
vaccination, significant increases in influenza specific
total IgG were found in mice vaccinated with the mIL-2
bearing CYT-IVAC compared to wild-type vaccinated mice
(Figure 6). While IgG levels were elevated in mice vacci-
nated with the mIL-4 bearing CYT-IVAC, these levels were
not significantly higher that wild-type vaccinated mice.
Interestingly, we found influenza specific IgG levels in
mice vaccinated with the mGM-CSF bearing CYT-IVAC to
be much lower than the wild-type vaccinated mice.

To further characterize the immune response elicited by
CYT-IVACs we determined the influenza specific IgG1 and
IgG2a levels in the serum by ELISA. It is well established
that elevated IgG1 isotype levels, compared to IgG2a, is
indicative of a Th2 mediated immune response whereas
high IgG2a levels is indicative of a predominately Th1-type
response. Mice vaccinated with either the mIL-2 CYT-
IVAC or the mIL-4 CYT-IVAC had significantly higher
IgG2a titers compared to wild-type vaccinated mice (Figure
7). Although significantly higher IgG1 titers were detected
in IL-2 CYT-IVAC vaccinated mice compared to wild-type
vaccinated mice, the IgG2a isotype remained the predomi-
nant influenza specific isotype detected in serum samples
collected from mIL-2 or mIL-4 CYT-IVAC vaccinated mice,
indicating a skewing towards a Th1 immune response.

It is important to note that there was no direct correlation
between elevated antibody titers and protection when
evaluated on a mouse-by-mouse basis. That is, mice with
high influenza specific antibody titers were not necessarily
protected following lethal challenge and several mice
from the IL-2 and IL-4 CYT-IVAC groups, which displayed
low seroconversion titers survived lethal challenge. We
were unable to detect neutralizing antibodies in any of the
serum samples, however, neutralizing immune responses
were clearly evoked upon challenge as viral loads were sig-
nificantly reduced in the IL-2 and IL-4 CYT-IVAC vacci-
nated animals at day 4 post-challenge (see Figure 8). It is

Figure 5

Proliferation induced by CYT-IVACs is specific and depend-ent on the respective membrane-bound cytokineFigure 5
Proliferation induced by CYT-IVACs is specific and 
dependent on the respective membrane-bound 
cytokine. Proliferation of cytokine responsive cell lines 
CTLL-2 (A) and CT.4s (B) was measured following incuba-
tion with β-propiolactone inactivated mIL-2 or mIL-4 bearing 
CYT-IVACs. IL-2 CYT-IVAC induced proliferation of CTLL-2 
cells was inhibited in a dose dependent manner with anti-
mIL-2 neutralizing antibodies (C). Recombinant protein was 
used as a positive control.
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therefore possible that our microneutralization assay was
not sensitive enough to detect the low levels of neutraliz-
ing antibody induced by the single low dose of vaccine
administered.

Vaccination with CYT-IVACs results in enhanced 
protection against lethal influenza virus challenge
The most compelling evidence supporting the immunos-
timulatory or immunomodulatory properties of our CYT-
IVACs was the protection against lethal challenge. Here

single dose, vaccinated mice were challenged on day 35
post vaccination with a lethal dose of mouse-adapted
influenza A/PR/8/34 (100 LD50). Weight loss and survival
were monitored following challenge. Weight loss in mice
vaccinated subcutaneously with wild-type vaccine or
mGM-CSF bearing CYT-IVAC closely mimicked that of
PBS (sham) inoculated mice (Figure 7A). Sudden
increases in percent weight loss in these groups between
days 6 and 8 can be explained by a combination of recov-
ering weight of remaining mice and loss of mice due to

Inactivated influenza vaccines bearing membrane-bound immunomodulators enhance serum anti-viral antibody titersFigure 6
Inactivated influenza vaccines bearing membrane-bound immunomodulators enhance serum anti-viral anti-
body titers. Balb/c mice were vaccinated subcutaneously with 0.375 μg of A/PR/8/34 wild-type (n = 20) or A/PR/8/34 bearing 
membrane-bound GM-CSF (n = 10), IL-2 (n = 19), and IL-4 (n = 20). PBS served as negative vehicle control. Serum was col-
lected on day 21 post-vaccination and antibody titers for influenza virus specific IgG and isotypes IgG1 (Th2) and IgG2a (Th1) 
were determined by ELISA. Data is displayed as the geometric mean titer in ng/ml for each group. (* p < 0.05 compared to PR/
8/34 w.t., ** p < 0.01 compared to PR/8/34 w.t.)
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Inactivated influenza vaccines bearing membrane-bound immunomodulators protect mice against lethal challengeFigure 7
Inactivated influenza vaccines bearing membrane-bound immunomodulators protect mice against lethal chal-
lenge. Balb/c mice were vaccinated subcutaneously with 0.375 μg of inactivated wild-type vaccine (n = 20) or CYT-IVACs 
bearing membrane-bound GM-CSF (n = 10), IL-2 (n = 19), or IL-4 (n = 20) vaccine preparations. Mice were then challenged 
with 100 LD50 of mouse-adapted A/PR/8/34 on day 35 post-vaccination. PBS served as negative vehicle control. Percent weight 
change (A) and survival (B) were monitored over time. (* p < 0.05 compared to PR/8/34 w.t., *** p < 0.001 compared to PR/8/
34 w.t.)



Virology Journal 2009, 6:42 http://www.virologyj.com/content/6/1/42
death; albeit mostly due to the latter. Only 20% of mice
vaccinated subcutaneously with wild-type vaccine and
10% of mGM-CSF CYT-IVAC vaccinated mice were pro-
tected against lethal homotypic challenge (Figure 7B).
Mice vaccinated with mIL-2 or mIL-4 bearing CYT-IVAC
exhibited reduced and delayed weight loss compared to
mice vaccinated with wild-type vaccine. Over 50% (p <
0.05) of mice vaccinated with mIL-2 bearing CYT-IVAC
and 75% (p < 0.001) of mIL-4 CYT-IVAC vaccinated mice
survived lethal challenge (Figure 7B) and those mice that
succumbed to infection took considerably longer to do so.

CYT-IVAC vaccination resulted in reduced viral loads in 
lungs of infected mice
In addition to evaluating protection from lethal challenge
we compared viral loads in lungs of mice vaccinated with

CYT-IVACs or wild-type vaccine following challenge on
day 35 post vaccination. Lungs were harvested from 3
mice per vaccine group on day 4 post-challenge and viral
loads of lung homogenates were determined for each
mouse. We chose to omit the mGM-CSF CYT-IVAC from
this study because previously recorded results indicated
no adjuvant effect for this CYT-IVAC, when administered
subcutaneously. Viral titers in the lungs of mice vacci-
nated with either the mIL-2 or mIL-4 CYT-IVAC were a full
log lower compared to mice vaccinated with the wild-type
vaccine (Figure 8), further confirming the enhanced pro-
tective efficacy afforded by membrane-bound cytokines
on the virus particles.

CYT-IVAC vaccination significantly reduces viral loads in lung tissue following lethal challengeFigure 8
CYT-IVAC vaccination significantly reduces viral loads in lung tissue following lethal challenge. Mice vaccinated 
with either wild-type vaccine or CYT-IVACs challenged on day 35 post-vaccination with 100 LD50 of mouse-adapted A/PR/8/
34. Mice were sacrificed on day 4 post-challenge and viral loads from homogenized lung tissue (n = 3) were determined by tis-
sue culture infectious dose assay. Data is expressed as TCID50 per gram of lung tissue. (* p < 0.05 compared to PR/8/34 w.t.)
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Discussion
In the present study we describe a novel approach to
immunopotentiate the anti-viral, protective response
induced by whole virus inactivated influenza vaccines
without the need for additional adjuvants or boosting
doses of vaccine. Not only were our cytokine-bearing
influenza vaccines (CYT-IVACs) more efficacious than
non-adjuvanted whole virus vaccine, but they skewed the
elicited humoral response towards a Th1 mediated
humoral immune response. Previously, we demonstrated
feasibility of this platform for production of avian influ-
enza vaccines bearing a membrane-bound form of
chicken-derived IL-2 and GM-CSF [22]. CYT-IVAC-bear-
ing chIL-2 significantly boosted antiviral antibody titers in
vaccinated chicks compared to unadjuvanted vaccine.
Here, we have extended these studies and were able to suc-
cessfully develop a platform upon which membrane-
bound forms of mammalian-derived immunomodula-
tory proteins such as mouse IL-2, IL-4, or GM-CSF can effi-
ciently be incorporated into budding virus particles.
Importantly, we confirmed that bioactivity was retained
following inactivation of the virus with formaldehyde
(data not shown) or β-propiolactone, two virus inactivat-
ing agents commonly used during the formulation of cur-
rent influenza vaccines [32]. Further, we were able to
demonstrate that the intrinsic proliferative-inducing activ-
ity associated with each individual CYT-IVACs was spe-
cific for the incorporated membrane-bound cytokine
(Figure 5). This suggests that it is not simply the inclusion
of the fusion protein itself that conveys immune stimulat-
ing properties, but the demonstrated bioactivity of the
incorporated cytokine. It should also be noted that long-
term storage (> 12 months at 4°C) did not result in any
loss of cytokine specific bioactivity associated with the
inactivated CYT-IVACs. In our hands, CYT-IVACs are sta-
ble and remain bioactive even following freeze/thaw
when stored at -80°C.

Viral incorporation of membrane-bound cytokines is
achieved through interactions between the viral matrix
protein and cytoplasmic tail domains of the cytokine
fusion construct, which is the same interaction used to
incorporate viral hemagglutinin. Thus, there was the pos-
sibility that this platform would result in significant loss
of full-length viral HA in our CYT-IVACs. Although we
were unable to determine exact full-length HA protein lev-
els, for lack of a purified standard, optical density meas-
urements were highly similar among CYT-IVACs using
HA1 (H1) specific antibodies in slot blot assays. This sug-
gests that total HA levels were not markedly reduced in the
CYT-IVACs compared to wild-type vaccine. In addition,
hemagglutination units (HAU/μg total viral protein) of
CYT-IVAC and wild-type vaccines did not differ signifi-
cantly (Table 1). Since we did not fully understand how
anchoring the cytokine to the virus particle may affect its

full biological capacity, we quantitated both cytokine pro-
tein levels and specific bioactivity associated with individ-
ual CYT-IVAC formulations. There was considerable
variation in the levels of incorporated cytokine based on
protein content as well as associated bioactivity. For
example, membrane-bound GM-CSF was incorporated at
relatively high levels yet was poorly bioactive. Both IL-2
and IL-4 CYT-IVACs exhibited similar cytokine specific
bioactivity, yet had variable amounts of incorporated
cytokines. Of note, membrane-bound cytokine incorpora-
tion was relatively consistent across several independent
vaccine preparations based on associated bioactivity per
μg of viral protein (data not shown). This suggests that the
observed variation in incorporation is specific for a given
fusion construct and not due to variation in growth prop-
agation of the virus in cell culture. The observed variabil-
ity may partially explain why the GM-CSF CYT-IVAC, with
low associated bioactive GM-CSF, did not provide better
protection that the wild-type vaccine. Future formulations
in which the GM-CSF molecule is extended further out
from the virus particle may help enhance its bioactivity.
Clearly, the amount of incorporated cytokine necessary to
achieve an immunopotentiating effect will likely be
cytokine specific and will require additional testing to
optimize in vivo immunomodulatory effective dose.

Our approach of anchoring immunostimulators directly
to the inactivated virus particle was designed to augment
responses to current trivalent inactivated influenza vac-
cine platforms, which include three formulations, whole
virus, split, or subunit vaccines with whole virus vaccines
being the most immunogenic [33-36]. TIVs are generally
well tolerated with few, if any, adverse reactions reported
[37]. Adverse reactions have been reported in children
vaccinated with whole virus formulations and they are
generally administered split or subunit vaccines [32,38];
however, CYT-IVACs might reduce side effects of whole
virus formulations if they permit the use of lower anti-
genic doses. Immunity induced by TIVs is dominated by
humoral immunity, predominantly influenza specific
serum IgG1 [39-42]. Our CYT-IVACs bearing IL-2 and IL-4
were both able to induce a more balanced response as evi-
dent by the higher levels of antiviral IgG1 and IgG2a anti-
bodies compared to wild-type unadjuvanted virus
vaccine. Though we did not directly assess cellular
immune responses to our CYT-IVACs, isotype switching
from IgG1 to IgG2a is known to be stimulated during Th1-
type immune responses, and has been implicated in
increased clearance of influenza infections following
influenza vaccination [43-50]. Interestingly, the conven-
tional immunological function of IL-4 is to stimulate Th2
type immune effectors and to suppress Th1 immunity.
However, the IL-4 bearing CYT-IVAC, which induced ele-
vated IgG2a antibody titers, appears to be able to polarize
immune effectors in a different manner than that
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described for soluble IL-4 [51-54]. Other groups have
reported that IL-4 in a membrane-bound form and in a
highly localized environment can induce IL-12 produc-
tion, a potent Th1 inducer, in APCs [55-58]. As noted,
results obtained with the GM-CSF bearing CYT-IVAC were
less conclusive and may be due in part to the reduced bio-
activity of membrane-bound GM-CSF incorporated into
virus particles. Large doses of GM-CSF can have an inhib-
itory effect on effector T cell function or lead to activation
and expansion of myeloid suppressor cells [59,60]. This
will require further clarification and additional studies.

Efficacy of TIVs in elderly and immunocompromised
individuals is poor (30–70%) due in part to decreased
immune function in these individuals that results in lower
antibody titers following vaccination [32]. The inability of
TIVs to effectively protect the elderly and to induce cross-
protection has led to investigation of adjuvants such as
Microfluidized Emulsion 59 (MF59), aluminum or toxin
based adjuvants, and FLU-ISCOMs that aid in enhancing
the immune response to inactivated influenza vaccines
[7,8,61-69]. Our CYT-IVACs may provide the necessary
adjuvant-like activity to stimulate protective responses in
the elderly and this is currently being evaluated in our lab-
oratory using an aged mouse model.

A wide range of applications exists for our cytokine-bear-
ing viral vaccine technology. It is adaptable to a variety of
species including avian, swine, canine, and equine by sim-
ply introducing species-specific immunomodulators.
Likewise, human-specific immunomodulators can be
incorporated in the platform for production of human
specific viral vaccines. Importantly, depending on the
location of the bioactive domains, immunomodulators
can be presented either as type I or II membrane-bound
molecules on the virus particle. This also serves to over-
come potential steric hindrances that may occur during
cytokine folding and/or presentation. In our laboratory,
we have been able to incorporate these membrane-bound
immunomodulators in H3N2, H1N1 as well as H6N2
(data not presented) influenza virus strains using the
same CYT-IVAC producer cell line. Thus, vaccines against
newly emerging influenza strains can be readily produced
using our CYT-IVAC producer cell lines. It should also be
noted, that this approach is amenable to virtually any
enveloped virus, requiring only virus specific adaptation
of the membrane-anchoring domain to ensure incorpora-
tion during the budding process. This approach is also
amenable for inclusion of membrane-bound flagellin
into baculovirus-derived influenza virus-like particles
[70]. Our study provides independent evidence support-
ing the versatility and practicality of membrane-bound
immunomodulators as effective viral vaccine adjuvants.

Conclusion
We have demonstrated both the feasibility of viral incor-
poration of membrane-bound immunomodulators by
influenza viruses and the enhanced efficacy of our CYT-
IVACs compared to conventional, non-adjuvanted influ-
enza virus vaccines. Superior immunogenicity of CYT-
IVACs was manifested as elevated influenza specific anti-
bodies, particularly IgG2a isotypes implicating Th1 medi-
ated immunity. Enhanced protection from infection was
also demonstrated for IL-2 and IL-4 CYT-IVAC vaccinated
mice further illustrating the adjuvant effect of membrane-
bound IL-2 and IL-4. The adjuvant or immune stimulating
properties of CYT-IVACs makes them attractive candidates
for inducing a more robust and protective immune
response in the elderly and immunocompromised indi-
viduals where immune responses are waning or compro-
mised. Further, the membrane-bound
immunomodulators may be helpful in either augmenting
the immunogenicity of influenza vaccines that require
large antigen doses to confer protection or in reducing the
dose required for protection. This could significantly
increase vaccine availability targeting low immunogenic
strains such as H5N1. Current studies in our lab encom-
passing additional immunostimulatory molecules, the
intranasal route of vaccine delivery, efficacy in the aged
mouse model and other enveloped virus platforms will
help expand the utility and efficacy of the CYT-IVAC
approach.
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