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Abstract
Background: Since the emergence of H5N1 high pathogenicity (HP) avian influenza virus (AIV) in
Asia, numerous efforts worldwide have focused on elucidating the relative roles of wild birds and
domestic poultry movement in virus dissemination. In accordance with this a surveillance program
for AIV in wild birds was conducted in Mongolia from 2005-2007. An important feature of Mongolia
is that there is little domestic poultry production in the country, therefore AIV detection in wild
birds would not likely be from spill-over from domestic poultry.

Results: During 2005-2007 2,139 specimens representing 4,077 individual birds of 45 species were
tested for AIV by real time RT-PCR (rRT-PCR) and/or virus isolation. Bird age and health status
were recorded. Ninety rRT-PCR AIV positive samples representing 89 individual birds of 19
species including 9 low pathogenicity (LP) AIVs were isolated from 6 species. A Bar-headed goose
(Anser indicus), a Whooper swan (Cygnus cygnus) and 2 Ruddy shelducks (Tadorna ferruginea) were
positive for H12N3 LP AIV. H16N3 and H13N6 viruses were isolated from Black-headed gulls
(Larus ridibundus). A Red-crested pochard (Rhodonessa rufina) and 2 Mongolian gulls (Larus vagae
mongolicus) were positive for H3N6 and H16N6 LP AIV, respectively. Full genomes of each virus
isolate were sequenced and analyzed phylogenetically and were most closely related to recent
European and Asian wild bird lineage AIVs and individual genes loosely grouped by year.
Reassortment occurred within and among different years and subtypes.

Conclusion: Detection and/or isolation of AIV infection in numerous wild bird species, including
2 which have not been previously described as hosts, reinforces the wide host range of AIV within
avian species. Reassortment complexity within the genomes indicate the introduction of new AIV
strains into wild bird populations annually, however there is enough over-lap of infection for
reassortment to occur. Further work is needed to clarify how AIV is maintained in these wild bird
reservoirs.
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Background
Surveillance of wild birds for avian influenza virus (AIV)
has increased substantially worldwide in recent years due
to the spread of the H5N1 high pathogenicity (HP) AIV
among domestic and wild birds in Asia, Europe and
Africa. Mongolia is an important location for H5N1 sur-
veillance efforts as it supports large populations of wild
birds from two major migratory flyways; the "East Asia-
Australasian Flyway", and the "Central Asian Flyway" [1].
In addition, Mongolia has very little industrial poultry
production. During 2005-2007 there were an estimated
100,000 chickens throughout the country and most birds
are reared for egg production in moderately biosecure
facilities located in urban centers [2,3]. No estimates for
duck or turkey production have been established. This rel-
ative paucity of poultry production suggests that the pres-
ence of HPAIV would be the result of wild bird movement
alone.

In order to better understand the ecology of AIV in wild
birds, data from wild bird surveillance studies can be used
to attempt to identify factors that correlate with AIV detec-
tion and isolation from wild birds, such as: reservoir spe-
cies, bird health status, age, season and location.
Additionally, phylogenetic data can help to elucidate how
the virus is disseminated geographically. Here we report
the detection, isolation and genetic characterization of
nine LPAIVs isolated from wild birds in Mongolia from
specimens collected in 2005 through 2007.

Results
Virus detection and isolation
A total of 2,139 swabs representing 4,077 individuals
from 45 species were collected and tested (Table 1). Of
these 443 samples representing 888 birds were tested by
VI alone (samples collected in 2005) from which 4 low
pathogenicity (LP) AIVs were isolated (0.9%) and one
type-4 avian paramyxovirus (Table 2). All 4 were the
H12N3 subtype (Table 2). All LPAIVs were isolated from
fecal swabs. From this same set of samples one H5N1

HPAIV was isolated in 2005 from a dead Whooper swan
(Cygnus cygnus) and will be characterized in depth in a
separate report.

Six hundred and seventy eight samples collected in 2006
were screened for AIV by rRT-PCR, of which 41 (6.0%)
were positive. Viable AIV was isolated from 3 (7.3%) of
the 41 rRT-PCR positive samples from 2006. One isolate
was identified as the H3N6 subtype, one was H13N6 and
one isolate was the H16N3 subtype (Table 2). A total of
1,018 samples collected in 2007 were screened by rRT-
PCR for AIV, of which 49 (4.8%) were positive. Two
H13N6 AIVs (4.1% of the 49 rRT-PCR positives) were iso-
lated from the 2007 samples. Although virus isolation was
not attempted on all samples from 2006 and 2007
because they were initially screened with rRT-PCR first,
the rates of isolation from the total numbers of samples
collected were 0.4% for 2006 and 0.2% for 2007 (assum-
ing none of the rRT-PCR negative samples would have
been virus isolation positive).

Virus detection by species, age and bird health status
Overall 19 species were positive for AIV by rRT-PCR and
viable virus could be isolated from 6 species (Table 2 and
Additional file 1). Age and health status could only be
assigned for birds that were sampled individually. The 90
samples that tested positive by rRT-PCR comprised 36
pooled fecal samples and swabs from 53 individual birds
(one bird tested positive on both upper respiratory and
cloacal swabs). In total 17 juvenile (9.8%, n = 173) and 36
adult (11.2%, n = 321) birds sampled individually tested
positive by rRT-PCR. The difference in proportion of the
number of positive adults and juveniles was not statisti-
cally significant (Fishers exact test). The health status of
individual birds from which rRT-PCR positive swabs were
collected included 45 healthy, 1 sick and 7 dead birds. All
isolates obtained in 2005 and 2006 were derived from
fecal samples therefore age and health status could not be
determined, while both isolates in 2007 were collected
from dead juveniles.

Table 1: Number of samples and birds tested by real-time RT-PCR and virus isolation.

rRT-PCR Virus Isolation

Year Total samples 
tested

Total no. of birds 
represented

No. pos/total 
tested

% pos No. pos/total 
tested

% of total pos % of rRT-PCR pos 
for VI

2005 443 888 NAa NA 4/443 0.9 NA
2006 678 2,681 41/678 6.0 3/41 0.4 7.3
2007 1,018 508 49/1,018 4.8 2/49 0.2 4.1

Total 2,139 4,077 90/2,139 4.2 9/533 1.7 5.5b

a. NA = not applicable
b. Only includes data from 2006 and 2007, since samples collected in 2005 were not tested by rRT-PCR
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Table 2: Low Pathogenic avian influenza virus isolates collected 2005-2007 from wild birds in Mongolia.

Isolate Name Subtype Species name Bird health status Bird age

BarHeadedGoose/Mongolia/143/2005 H12N3 Anser indicus Unknown Unknown
RuddyShelduck/Mongolia/P52/2005 H12N3 Tadorna ferruginea Unknown Unknown
RuddyShelduck/Mongolia/37/2005 H12N3 Tadorna ferruginea Unknown Unknown
WhooperSwan/Mongolia/232/2005 H12N3 Cygnus cygnus Unknown Unknown
BlackHeadedGull/Mongolia/1756/2006 H16N3 Larus ridibundus Unknown Unknown
BlackHeadedGull/Mongolia/1766/2006 H13N6 Larus ridibundus Unknown Unknown
RedCrestedPochard/Mongilia/1915/2006 H3N6 Rhodonessa rufina Unknown Unknown
MongolianGull/Mongolia/401/2007 H13N6 Larus vagae mongolicus Dead Juvenile
MongolianGull/Mongolia/405/2007 H13N6 Larus vagae mongolicus Dead Juvenile

Phylogenetic trees of internal protein genesFigure 1
Phylogenetic trees of internal protein genes. Trees include all avian influenza virus isolates collected from wild birds in 
Mongolia 2005-2007 and selected reference isolates. Trees are shown for all 8 segments of each isolate as follows: A) NS, B) 
M, C) NP, D) PA, E) PB1 and F) PB2. Trees were constructed with merged duplicate runs of BEAST v. 1.4.8 using HKY substi-
tution, empirical base frequency, Gamma heterogeneity, codon 2 partitions, relaxed lognormal clock, Yule Process tree prior 
with default operators with UPGMA starting tree and MCMC length of 107. Posterior values are shown at the nodes.  Isolates 
collected during this study are shown in red font.  
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Phylogenetic analysis
The coding sequences of the full genomes of all isolates
were sequenced and analyzed phylogenetically. All eight
genes of all nine Mongolian viruses were most closely
related to Asian or European wild-bird lineage viruses
(Figures 1 and 2), although there was variation among the
8 gene segments.

Among the nine LPAIV viruses isolated during this study
there was some genetic variation observed among all eight
gene segments, however some of the viruses isolated in
the same year which were also the same HA and NA sub-
type had very closely related genomes (Figures 1 and 2);
for example all 8 gene segments from the 4 H12N3 iso-
lates from 2005 were closely related to each other (98.0%
or higher identity). Similarly all 8 gene segments of the 2
H13N6 viruses from 2007 were closely related to each

other (99.0% or greater identity). Evidence of multiple
lineages and reassortment was seen among the remaining
isolates; the internal protein genes (NS, M, NP, PA, PB1,
PB2) from the 2006 H13N6 isolate (BlackHeadGull/
1766/06) were more closely related to the BlackHead-
Gull/1756/06 H16N3 isolate (minimum of 99.2% iden-
tity), than to the 2007 H13N6 viruses. The H3N6 virus
isolated in 2006 (RedCrestedPochard/1915/06) was most
closely related to the 2005 viruses in the M, NS, NP, PA
and PB1 genes (> 97% identity between RedCrested-
Pochard/1915/06 and the 2005 viruses) and the other
2006 viruses in the PB2 with 93.6% identity.

Discussion
Efforts to monitor wild birds have increased worldwide in
recent years based on concern with the possibility that
wild birds would disseminate the Asian H5N1 HPAIV.

Phylogenetic trees of HA and NA genesFigure 2
Phylogenetic trees of HA and NA genes. Trees include all the HA and NA genes from avian influenza virus isolates col-
lected from wild birds in Mongolia 2005-2007 with selected reference isolates. Trees are shown for all 8 segments of each iso-
late as follows: A) H3, B) H12, C) H13, D) H16, E) N3 and F). N6. Trees were constructed with merged duplicate runs of 
BEAST v. 1.4.8 using HKY substitution, empirical base frequency, Gamma heterogeneity, codon 2 partitions, relaxed lognormal 
clock, Yule Process tree prior with default operators with UPGMA starting tree and MCMC length of 107. Posterior values are 
shown at the nodes. Isolates collected during this study are shown in red font.
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Mongolia provides a good location for wild bird monitor-
ing because there is very little domestic poultry produc-
tion. Therefore the detection of the Asian H5N1 HPAIV in
resident or migratory birds would likely be due to wild
birds and not spillover from infected poultry. Equally
important, this study also provides an opportunity to col-
lect additional data on the dissemination of LPAIV in wild
birds in Asia by contributing data to help establish the
genetic relationships among wild bird origin AIVs.

Overall trends in factors that correlate with AIV detection
and isolation from wild birds, such as species, and bird
health status correlate between this study and trends
reported for other locations. Real-time RT-PCR positive
specimens were collected from a total of 19 species, from
which viable avian influenza virus was isolated from 6
species. Sampling was targeted to waterbirds of orders
Anseriforme and Charadriiforme, but also included repre-
sentatives of Gaviformes, Podicepiformes, Gruiformes,
Falconiformes, Coraciformes and Passeriformes. With the
possible exception of two Passeriformes (Luscinia svecica
and Calandrella cheleensis) which were rRT-PCR positive
and virus isolation negative, AIV has been isolated from or
detected in samples from all the other species that were
positive for virus isolation or detection in this study [4,5].

Since LPAIV, as defined by the world animal health organ-
ization [6], does not normally cause disease in wild bird
species [7], it was expected that most of the birds from
which the isolates were obtained would be healthy; how-
ever 2 virus isolates and 6 virus isolation negative, rRT-
PCR positive samples were collected from dead birds.
Without the support of pathological findings, it is not
possible to determine if AIV contributed to the death of
these birds, but it is unlikely and is probably coincidental.
Since detection of the Asian H5N1 HPAIV, which can lead
to mortality in some aquatic bird species in the wild [8,9],
was a primary interest in this study, sample collection was
biased to dead birds, if present.

One possible exception to trends reported in most previ-
ous studies are AIV isolation rates by age. The rates fre-
quently reported as being higher in juvenile than adult
wild birds [10-13], here an essentially equal proportion
(statistically the same) of adult birds (11.2%, n = 321)
were found to be positive by rRT-PCR as juveniles (9.8%,
n = 173). The importance of this is unclear since they were
only rRT-PCR positive. Also the relative proportions of
adults to juveniles that were sampled in each species were
biased, with adult samples biased to Anseriforme species
(that might be expected to show higher prevalence of
AIV), whereas Phalacrocorax carbo, were over-represented
among juveniles (and might be expected to exhibit lower
AIV prevalence rates). The age was recorded for too few

birds that were positive for virus isolation to draw conclu-
sions.

In general AIV isolation and detection rates in wild birds
vary substantially by year, season, location and species
[12-17]. The rates of isolation observed here, both overall
and for individual years, was below 1%, however, since
this study was only conducted for three years, there is not
enough data to establish long-term trends for these spe-
cies in Mongolia.

Conclusion
The broad host range of AIV in avian species has been well
described and is reinforced by this report which adds two
species which have not been previously identified as hosts
(although only by rRT-PCR). Further work would be
needed to establish whether these species may serve as res-
ervoirs.

The genetics of the virus can offer insight into the dissem-
ination and mixing of virus populations in wild bird res-
ervoirs and can offer insight into the evolution of AIV. The
nine LPAIVs isolated from wild birds in Mongolia showed
a great deal of genetic variation in all 8 gene segments and
although there was some grouping of genes from viruses
isolated in the same year, there was also evidence of reas-
sortment and it appeared that lineages were not main-
tained from year to year indicating that the virus is being
re-introduced with some over-lap of infection. Some of
the genetic differences may also be attributed to species of
origin, since the viruses do also group by species, or by
species groups that share habitat. Therefore the broad dif-
ferences in lineages from year to year may be due to what
is being carried by a species and how much that species is
able to transmit the virus to other species at a location. It
is clear that numerous lineages of AIV move through Mon-
golia, attesting to the diversity of AIV populations in wild
birds. Further work is needed to illuminate the details of
AIV ecology in these species and habitats.

Materials and methods
Specimen collection
Samples were collected from a total of 43 locations across
Mongolia (Figure 3) during three visits to the country in
July-August 2005, July-October 2006 and April-October
2007. The primary reason for the variation in changes of
sampling sites related to the work being part of the
national surveillance response to HPAI H5N1, rather than
a purely hypothesis driven study. In 2005 when we
mounted our first sampling expedition to the country, our
objective was to determine whether there was any evi-
dence that the recent outbreak reported at Qinghai [8]
might have spread elsewhere along the flyway. By the time
we had returned in 2006, our objective was slightly differ-
ent, as by that time the country had confirmed three out-
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breaks of HPAI and the question was more one of how
widespread the virus had become (hence the wider geo-
graphical range). By 2007 there had been no further out-
breaks reported in Mongolia, so we reduced our search
area to the lakes within the general vicinity of, and includ-
ing the national outbreak lakes. No commercial poultry
was located near sampling sites.

Sampling strategies included the collection of fresh envi-
ronmental fecal samples and individual swabs from sick
or dead birds and from live healthy birds captured using
techniques appropriate for each species. Fresh environ-
mental fecal swabs were collected from single-species con-
gregations of birds to assure correct identification, and
placed individually, or pooled in groups of five in cryo-
vials containing viral transport media consisting of 1-2 ml
of brain heart infusion broth containing 5 μg/ml ampho-
tericin B, 10,000 units/ml penicillin, and 1,000 μg/ml
gentamycin sulphate. Cloacal swabs and swabs from the
upper respiratory tract (collected from the oropharynx or
trachea depending on bird size) were collected from indi-
vidual live, sick and dead birds and placed individually in
cryo-vials containing viral transport medium. The ages of
individual birds were estimated based on plumage charac-
teristics and their sex was determined using differential
plumage, or extrusion of genitalia (ducks, geese and
swans). Samples were maintained at 4°C upon collection
then frozen in liquid nitrogen within 4 hours of collec-
tion. Care was taken to maintain the cold-chain for speci-
mens throughout transport and once in the lab all
samples were stored at -70°C or below until processed.

Sample processing
Sample processing was modified from year to year to
accommodate logistical changes and in an attempt to
minimize false negative results due to virus degradation.
Although these minor modification somewhat reduce the

ability to compare data year-to-year, it was deemed that
the increase in accuracy was more important. Samples col-
lected in 2005 were collected in viral transport media and
all specimens were tested only by virus isolation (VI); rRT-
PCR was not attempted with samples from 2005. Samples
collected in 2006 were preserved in viral transport media
in 2006, tested by rRT-PCR for type A influenza as
described below and VI was subsequently attempted with
all rRT-PCR positive samples. Samples collected in 2007
were split into a vial of guanidine isothiocyanate and a
duplicate vial of viral transport media. The samples in
guanidine isothiocyanate were screened by rRT-PCR as
described below; then VI was subsequently attempted
with all rRT-PCR positive samples on the duplicate sam-
ples that had been preserved in viral transport media.

Screening of swabs for AIV by rRT-PCR
Samples from 2006 and 2007 were processed at different
laboratories, therefore the procedures were not identical.
Samples collected in 2006 were processed at Southeast
Poultry Research Laboratory, USDA-ARS as follows: RNA
was extracted from swabs using a procedure optimized for
oral and cloacal swab samples as previously described
[18]. A previously reported rRT-PCR test that targets the
type A influenza matrix (M) gene was run on the Smart
Cycler (Cepheid, Inc., Sunnyvale, CA) real-time PCR
instrument as previously described [19]. An internal posi-
tive control [20] was included to ensure that inhibitors
were not causing false negative results; any samples that
had both a negative M gene test and a negative internal
control result were not counted as tested samples. Sam-
ples that were positive for the influenza M gene were proc-
essed for virus isolation.

Samples from 2007 were processed at the University of
California, Davis as follows: RNA was extracted from swab
samples in guanidine isothiocyanate using the MagMAX-
96 Viral Isolation Kit (Ambion Inc. Austin, TX) in accord-
ance with the manufacturers instructions. A rRT-PCR
which targets the M gene was conducted as described by
Runstadler, et al. [21] which was the standard test in this
lab and run on an AB 7500 Real-Time PCR System
(Applied Biosystems, Foster City, CA).

Virus isolation and subtype identification
Virus isolation was attempted with swab material using
10-day old specific-pathogen-free (SPF) embryonating
chicken eggs using established procedures [22]. Hemag-
glutinating agents from VI attempts were confirmed as
type A influenza by commercial antigen capture assay
(BinaxNOW Flu A and B, Inverness Medical, Inc. Port-
land, ME). The subtypes of influenza positive samples
were determined by gene sequencing of the HA and NA
genes as described below. If virus isolation attempts were
unsuccessful, no further characterization was conducted

Location of the sampling sites in Mongolia by yearFigure 3
Location of the sampling sites in Mongolia by year

2005

2006 2007
1000 km
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on rRT-PCR positive, virus isolation negative samples,
because of the difficulty of amplifying an unknown HA
and NA subtypes with the low amount of viral RNA fre-
quently obtained from swab material; it was considered to
be too resource intensive for the amount of information
that would be gained.

Virus genome sequencing and analysis
Full genome sequencing of all isolates was performed as
previously described [23]; Genbank accession numbers:
GQ907286-GQ907357. Phylogenetic analysis was per-
formed by aligning the nucleotide sequences of genes
from the Mongolian viruses and selected reference isolates
for the different lineages for each gene and aligning them
with either ClustalV or ClustalW (Lasergene 7.1, DNAS-
TAR, Madison, WI). Trees were constructed with merged
duplicate runs of BEAST v. 1.4.8 [24] using HKY substitu-
tion, empirical base frequency, Gamma heterogeneity,
codon 2 partitions, relaxed lognormal clock, Yule Process
tree prior with default operators with UPGMA starting tree
and MCMC length of 107.

Abbreviations
AIV: avian influenza virus, HA: hemagglutinin; HP: high
pathogenicity; LP: low pathogenicity; NA: Neuramini-
dase; rRT-PCR: real-time reverse-transcription polymerase
chain reaction; SPF: specific pathogen free; VI: virus isola-
tion
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