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Abstract

MicroRNAs (small ~22 nucleotide long non-coding endogenous RNAs) have recently attracted
immense attention as critical regulators of gene expression in multi-cellular eukaryotes, especially
in humans. Recent studies have proved that viruses also express microRNAs, which are thought to
contribute to the intricate mechanisms of host-pathogen interactions. Computational predictions
have greatly accelerated the discovery of microRNAs. However, most of these widely used tools
are dependent on structural features and sequence conservation which limits their use in
discovering novel virus expressed microRNAs and non-conserved eukaryotic microRNA:s. In this
work an efficient prediction method is developed based on the hypothesis that sequence and
structure features which discriminate between host microRNA precursor hairpins and pseudo
microRNAs are shared by viral microRNA as they depend on host machinery for the processing
of microRNA precursors. The proposed method has been found to be more efficient than recently
reported ab-initio methods for predicting viral microRNAs and microRNAs expressed by mammals.

Background

MicroRNAs are a class of small non-coding RNAs which
have recently attracted widespread attention due to their
critical role in a wide spectrum of biological processes in
multi-cellular eukaryotes. In animals, these small RNAs
are processed from hairpin-forming precursors and
exported to the cytoplasm where they are further proc-
essed and incorporated into a protein complex, the RNA
Induced Silencing Complex (RISC) as a ~22 nucleotide
long mature miRNA. This RNA-protein complex then
affects regulation of gene expression by binding to the
3'UTR of messenger RNA and thereby causing a transla-
tional block [1]. Recent studies have shown that micro-
RNA mediated gene regulation is widespread in
eukaryotes and is presently known to encompass a wide

spectrum of biological processes ranging from growth and
differentiation to oncogenesis [2,3]. The entire set of bio-
logical processes in which microRNAs play a critical role
is yet to be unraveled.

Recently viruses have also been shown to express microR-
NAs [4,5]. These virus-expressed microRNAs have been
shown to not only regulate viral transcripts, but also host
transcripts. Furthermore, recent evidence suggest that
virus expressed microRNAs can play significant roles in
the pathophysiology of HIV infection, including latency
of the virus [6,7]. Moreover a microRNA residing in the
nef gene has been shown to target its own gene formation
in an auto regulatory loop [8,9] which is thought to be
critical in long-term non-progression of HIV infection.
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Recent studies have also shown that Herpes Simplex Type-
1 (HSV-1) expressed microRNA [10,11], derived from a
latency associated transcript (LAT) can target critical host
genes vital in mediating latency of disease.

Furthermore, microRNAs expressed by other pathogenic
viruses could also regulate host transcripts and thus play
important roles in the pathogenesis of disease. Thus it is
imperative to understand the entire repertoire of virus
expressed microRNAs in order to unravel the mechanisms
of pathogenesis of diseases caused by viruses and for
designing novel therapeutic strategies against the virus
[12].

Computational methods [13] have been critical in the dis-
covery of novel microRNAs many of which have been val-
idated experimentally. For example, miRseeker, was used
in the discovery of Drosophila expressed microRNAs [14]
and miRscan facilitated the discovery of C elegans microR-
NAs [15]. These methods rely heavily on hairpin struc-
tures and the evolutionary conservation of sequence. Also,
a phylogenetic shadowing [16] approach has been used
for the discovery of novel human microRNAs. Further-
more, methods have been recently proposed that do not
rely on conservation of microRNA sequences and have
helped in discovery of human, mouse and rat microRNAs
[17-19] as well as microRNAs in viruses [20,4]. While the
former method takes into consideration thermodynami-
cally stable RNA hairpins, the latter uses machine learning
approach to predict microRNAs. However, note that virus
expressed microRNA genes show rapid evolution. For
example, herpes-virus expressed microRNAs do not share
homologies with microRNAs expressed by other unre-
lated viruses or with that of the host, [21] but share
homologies within closely related viruses [22] This neces-
sitates the creation of newer and better algorithms for ab-
initio prediction of microRNAs.

Viruses are dependent on the cellular biosynthetic
machinery for the processing of microRNAs. Thus we
hypothesize that sequence-structure features that differen-
tiate true microRNA precursors from pseudo microRNA
hairpins are critical for processing microRNAs. These fea-
tures would be shared between host and viral microRNA
precursors and thus help in the prediction of viral micro-
RNAs. Moreover the microRNA processing mechanism is
conserved across eukaryotes. This implies that sequence
and structure features inherently unique or discriminative
of microRNA precursors are also likely to be shared across
eukaryotes.

We hypothesize that our method can therefore predict
microRNAs in other eukaryotic organisms as well as dis-
cover novel non-conserved microRNAs systematically
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missed by prediction methods which rely on evolutionary
conservation of sequences.

This proposed method employs Support Vector Machine
trained on sequence-structure feature elements for an effi-
cient discrimination between microRNA precursor hair-
pins and pseudo microRNA hairpins. We have validated
this approach for a number of known viral as well as
Chimpanzee, Mouse and Worm microRNA precursors
derived from public databases. We see that proposed
method is more accurate than the recently reported ab-ini-
tio microRNA prediction algorithms [18,23,24]. For
viruses and mammals (as evidenced by prediction accura-
cies in Pan troglodytes and Mus musculus). The method does
not perform better than other tools for Caenorhabditis ele-
gans probably due to the difference in the base composi-
tion in the genome.

In fact, a genome-wide analysis has been done on Herpes
Simplex virus (HSV-1) and furthermore a recent inde-
pendent study has experimentally validated a subset of
the prediction [10,11]. These provide evidence about the
genome-wide applicability and reliability of our method
for ab-initio prediction of microRNA precursors.

The method is fast enough for genome-wide predictions
even in larger genomes and can aid in the discovery of
both novel non-conserved microRNAs and novel virus-
expressed microRNAs.

Results

Model creation and selection

The models were created by taking a non overlapping ran-
dom samples amounting to half of the positive and nega-
tive datasets for training and were evaluated on the
remaining dataset. The process of model generation and
testing is summarized in Fig 1. One hundred such models
were created and evaluated by random sampling. Models
were analysed for sensitivity and specificity, where:

Sensitivity =100 * True positives /(True positives + False Negatives)
and

Specificity =100 * True Negatives /(False Positives + True Negatives)

The model which had maximum specificity was selected
for further evaluation and comparison with other existing
tools. We selected model with maximum specificity rather
than sensitivity to cut down on false positive predictions
that may arise from cross-species predictions. The per-
formance of the best models is summarized in Table 1.
The model 031 was selected as it had better specificity
than the other models and has a good sensitivity of 68%.
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Illustrative summary of the process flow in the pre-
sented method for microRNA precursor prediction.
The lines in red denote the process flow in prediction while
the lines in dark blue denote the process flow during training.

Prediction of known virus precursors

MicroRNA precursor sequences were downloaded from
miRbase for three classes of human viruses with experi-
mentally verified microRNAs, which include Epstein Barr
virus (EBV), Cytomegalovirus (CMV) and Kaposi Sarcoma
Herpes virus (KSHV). They had 23, 11 and 13 entries
respectively. The model correctly predicted 22 out of the
23, 11 out of 13 and 10/11 of the microRNAs expressed
by EBV, KSHV and CMV respectively. The comparisons of
different programs are summarized in Table 2.

Comparison with other prediction programs

The dataset of microRNAs expressed by viruses was tested
on three newer ab-initio microRNA prediction methods
reported in literature, BayesmiRNAfind [24], TripletSVM
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[23] and mir-abela [18]. We find that our method per-
forms better than the other methods.

Testing on new datasets of Herpes Simplex virus expressed
microRNAs

While this manuscript was in preparation, new microRNA
sequences have been reported for Herpes Simplex virus
(HSV) latency associated transcript (LAT) [10,11]. The
two hairpin sequences that were experimentally validated
were correctly predicted by our program as potential
microRNA precursors.

The results of the prediction are summarized in Table 2.

Comparison of the method on Eukaryotic microRNA
precursors

To validate the models, we compared our method with a
recently published method employing SVM on a set of
microRNA precursor sequences derived from miRbase for
Pan troglodytes (Chimpanzee), Mus musculus (Mouse) and
Caenorhabditis elegans (Worm). The number of miRNAs
were 83, 341 and 115 respectively. Only experimentally
validated sequences as annotated by miRbase was used for
the analysis. We selected three organisms to test the effi-
cacy of the method on datasets derived from evolutionar-
ily distinct species. While Chimpanzee and mouse are
evolutionarily closer mammals, worms are evolutionarily
distant and have been used extensively for comparative
genomics studies. We have compared our method with all
three ab-initio prediction methods for these organisms.

Average Frequencies of sequence-structure feature
elements

Average frequencies of the feature elements were com-
pared between the positive set (validated microRNA pre-
cursor hairpins) and the negative set (pseudo microRNA
hairpins) to derive the frequently occurring and infre-
quently occurring sets of features. 20 most frequent and
infrequent features are plotted in Fig 2 and 3.

The finding shown in Figure 2 that continuously paired
triplet elements (NNN111) occur in high frequency in
microRNA precursor hairpins than in pseudo microRNA
hairpins and that continuously unpaired (NNNO0O0O) ele-
ments have a higher frequency in pseudo microRNA hair-
pins agrees with earlier analysis [23] of structural
elements. This also reiterates the fact that microRNA pre-
cursor hairpins are well ordered structures in comparison
to non-microRNA hairpins. This also agrees with the pre-
vious finding by Kim et al [25]

Discussion

In the present study we demonstrate that incorporating
sequence-structure triplet elements can be used for effi-
cient ab-initio prediction of microRNA hairpins. Recently
a number of ab-initio prediction methods for microRNAs
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Table I: Sensitivity and specificity measures of top 5 models with
maximum specificity

SI No Model ID Sensitivity Specificity
I MODEL 031 68% 87%

2 MODEL 034 69.7 85.32

3 MODEL 076 69.3 86

4 MODEL 001 77% 78%

5 MODEL 100 67% 78%

have emerged, based on machine learning approaches.
These include ProMiR [19], BayesmiRNAfind[24], Triplet-
SVM [23] and mir-abela. ProMiR is one of the first
machine learning based approaches proposed in the liter-
ature for the discovery of microRNAs. BayesmiRNAfind
relies on Bayesian models while TripletSVYM and mir-
abela are based on Support Vector Machines (SVM). Tri-
plet SVM takes into consideration a triplet structural ele-
ment along with the nucleotide sequence in the mid-
position of the triplet element. Thus although TripletSVM
incorporates both sequence and structure the emphasis is
laid on the structural feature. Similarly mir-abela, also
uses SVM to classify microRNA precursor hairpins based
on a host of structural features with a less emphasis on the
sequence properties. On the other hand recent machine
learning method, BayesmiRNAfind uses detailed struc-
tural and thermodynamics features with sequence ele-
ments for prediction and employs a Naive Bayes
classification.
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In the method proposed here, we strike a balance between
sequence and structure elements by using chimeric feature
elements encompassing nucleotides and their base-pair-
ing states in the structure. We use the RBF kernel of SVM
to create a function corresponding to the hyper-surface
that optimally separates true and pseudo microRNA hair-
pins.

Though our method performs better than other methods
reviewed for mammalian as well as virus expressed micro-
RNA precursors, the other methods outperform our
method in predicting microRNAs expressed by Caenorhab-
ditis elegans (Table 3). This may be partly due to the differ-
ence in sequence composition between human and
Caenorhabditis elegans. The proposed approach can be fur-
ther improved for prediction of eukaryotic microRNAs by
training on a bigger dataset encompassing all experimen-
tally validated eukaryotic microRNA hairpin sequences
(manuscript in preparation). This method could also be
modified to predict microRNAs expressed by viruses with
a host range by training on host-specific datasets (for
example, plants). Further improvements can be achieved
by taking other parameters like thermodynamic features
[26] and positional predisposition of particular nucle-
otides. Yet another way to increase accuracy of predictions
is to club top performing algorithms for consensus predic-
tions.

In summary we describe a novel method based on
machine learning which performs better than recently
reported methods for ab-initio prediction of microRNA
hairpins. The algorithm is fast and efficient and can scale
for genome-scale predictions not only on viral genomes,
but also on much larger eukaryotic genomes.

Table 2: Comparison of the number of viral microRNAs predicted by the 3 ab-initio prediction algorithms-BayesmiRNAfind, mir-abela,
mirSVM and our method on a dataset of viral microRNA precursors derived from mirBase

Virus expressed microRNAs derived from miRbase

PREDICTIONS

Virus Bayes miRNAfind Mir-abela  tripletSVM MODEL 031
Epstein-Barr Virus (23) 21 18 21 22

-91.3 -78.26 -91.3 -95.65
Cytomegalovirus (11) 10 5 7 10

-90.91 -45.45 -63.63 -90.91
Kaposi Sarcoma Herpesvirus (13)* 9 5 8 Il

-69.23 -38.46 -61.54 -84.62
Herpes Simplex Virus (2) 2 0 0 2
**(sequences were derived from literature) 100% 0% 0% 100%

The numbers denote the total number of positive predictions and numbers in brackets following the organism name denotes the total number of
microRNA hairpins in mirRbase and that following the positive predictions denote the percentage of total predicted. (*)KSHV expresses only 12

microRNA hairpins. The 13t sequence is one with a possible single nucleotide editing that was cloned. (**) For HSV, the sequences were derived
from respective literature as the version of miRbase did not yet include the sequences.

Page 4 of 8

(page number not for citation purposes)



Virology Journal 2009, 6:129

http://www.virologyj.com/content/6/1/129

u Pre-microRNA Hairping
@ Pseudo rricroRNA Hairpins

0.014

0,012 ~

0.01 +

D.008

0.006 A

0.004 4

0.002

Average Frequencies

ANNNNNY
ANNNNNNY
ANMNNNNNN]

AGG111
NN

e A Y
GG 11T AN
G A
ARG R RSN

aAaa11
cap1nm
cac1n

=1 acain

AGRT1 ey

riplet Feature Elements

NN

ANNNNY
INSOOVNNANNANAN
N

GARTT

G T R RNANNNNNNNNUUNNNNGY
AGCTT R

GACTTT KRN

acG111 I

GG NN

ARC1M
aAccinm
ccecin
ccciom

Figure 2

Average frequencies of the top 20 differentiating feature elements in experimentally validated microRNA pre-
cursor hairpins in comparison to pseudo microRNA hairpins.

Materials and methods

MicroRNA Precursor Sequences

Human microRNA hairpin sequences were downloaded
from miRbase [27](release 8.0) as on May 31, 2006 and
contained 462 unique sequences. The dataset was manu-
ally curated to exclude sequences with no experimental
validation (as annotated by miRbase). The final dataset
comprised of 377 microRNA precursor sequences of vary-
ing lengths, with an average length of ~90 nucleotides.

The hairpin sequences for other eukaryotes were similarly
derived from miRbase. The virus expressed microRNA
hairpins for Epstein Barr virus (EBV), Cytomegalovirus
(CMYV), and Kaposi Sarcoma Herpes virus (KSHV) were
also derived from miRbase. The two validated microRNA
hairpin sequences from Herpes Simplex Virus Type I
(HSV-1) were derived from the respective manuscripts
[10,11].

Pseudo-microRNA sequences

We created a set of sequences of length 90 nt derived from
coding regions of genes with no alternate transcripts. The
coding sequences were batch downloaded from Ensembl
[28] (Ensembl 35) using the Martview feature. The

sequence was chopped into non-overlapping 90mer frag-
ments and checked for the propensity to form hairpin
sequences. RNAfold program which is part of the freely
available Vienna RNA Package [29], employing Zuker's
algorithm was used for this purpose. The sequences which
formed hairpins excluding internal loops and having a
free energy of less than -15 Kcalmol-1 were filtered using
in-house developed Perl scripts. A set of 430 such
sequences were selected randomly from the entire set and
used as the negative set for training.

Processing of Datasets

Both the positive and negative sets were tagged and
encoded into the native format for SVM with correspond-
ing values for each of the 512 vectors (see details below)
normalized to the total number of triplets possible for a
particular sequence using in-house developed Perl scripts.
RNAfold was used to determine the secondary structure of
microRNA precursors.

Training and test datasets

A set of about half the number of sequences in each data-
set (positive and negative) was picked up randomly for
training and the remainder formed the dataset for testing
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Figure 3

Average frequencies of the top 20 differentiating feature elements in pseudo microRNA precursor hairpins in
comparison to experimentally validated microRNA hairpins.

the model. Models were generated by creating one hun-
dred such random samples and were evaluated simultane-
ously. The models were named by numbers which
denoted the sample.

Support Vector Machine
Support Vector Machine is a supervised machine learning
method for generating functions for training data and is

based on statistical and optimizing theory. In the Support
Vector Machine algorithm, the datasets belonging to dif-
ferent classes are tagged, encoded as feature vectors and
are mapped onto a feature space by the kernel function,
with the aim of seeking a function that defines a global
hyper-plane that would optimally separate the classes of
training vectors. Support Vector Machine has been popu-

Table 3: Comparison of the prediction efficiency of TripletSVM and our method on eukaryotic microRNA hairpins derived from

mirBase

Experimentally validated microRNAs derived from miRbase PREDICTIONS

Virus Bayes miRNAfind Mir-abela tripletSVM MODEL 031
P troglodytes 72 68 71 73

(83) 86.74 81.92 85.54 87.95

M musculus 272 227 276 285

(341) 79.76 66.56 80.93 83.57

C elegans 76 78 86 74

(115) 66.08 67.82 74.78 64.34

The numbers denote the total number of positive predictions. The number in brackets following the organism name denotes the total number of
entries in miRbase and that following the number of positive predictions is the percentage positive predictions.
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lar for quite some time due to its ability to handle large
datasets and large feature spaces.

SVM was implemented using SVMlight, SVMlight is an
implementation of the Vapnik's Support Vector Machine
algorithm [30] originally created for solving pattern recog-
nition problems. The optimization algorithms used in
SvMlight are described in [31]. The algorithm has scalable
memory requirements and can handle problems with
many thousands of support vectors efficiently.

The implementation enables the user to define a number
of parameters as well as to select from a choice of inbuilt
kernel functions. We employed RBF kernel and used a grid
search strategy varying combinations of penalty parame-
ter C and the Radial Bias Function (RBF) kernel parameter
v. The performance of each model was assessed based on
specificity and sensitivity.

Feature Vectors/Elements

Sequence structure features are known to play a critical
role in microRNA processing [26]. We employed a feature
space which encompasses sequence and its structural con-
text at the same time. The sequence is folded using RNA-
fold and the structural context of overlapping triplets is
determined. A triplet nucleotide can have 64 possibilities
and each nucleotide in the triplet can have two states, 1 if
it is bound and 0 if it is unbound. Thus such a chimeric
feature (eg AUG001, AUGO10 ... etc) can have a total of
512 (i.e., 473*2/3) possibilities.

The feature content is calculated using the formula

Content of feature (i) = (Total number of features of type (i) in the sequence) /(Total number of triplets in the sequence)

where (i) represents one of the 512 features.

Web implementation
The method described in this paper is implemented as a
web-based server [32]
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