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Abstract
Background: Acanthamoeba polyphaga mimivirus is the largest known ds-DNA virus and its 1.2
Mb-genome sequence has revealed many unique features. Mimivirus occupies an independent
lineage among eukaryotic viruses and its known hosts include only species from the Acanthamoeba
genus. The existence of mimivirus relatives was first suggested by the analysis of the Sargasso Sea
metagenomic data.

Results: We now further demonstrate the presence of numerous "mimivirus-like" sequences using
a larger marine metagenomic data set. We also show that the DNA polymerase sequences from
three algal viruses (CeV01, PpV01, PoV01) infecting different marine algal species (Chrysochromulina
ericina, Phaeocystis pouchetii, Pyramimonas orientalis) are very closely related to their homolog in
mimivirus.

Conclusion: Our results suggest that the numerous mimivirus-related sequences identified in
marine environments are likely to originate from diverse large DNA viruses infecting
phytoplankton. Micro-algae thus constitute a new category of potential hosts in which to look for
new species of Mimiviridae.

Background
The discovery of Acanthamoeba polyphaga mimivirus was a
significant breakthrough in the recent history of virology.
Both mimivirus particle size (~750 nm) and its genetic
repertoire (1.2 Mb-genome encoding 911 protein coding
genes) are comparable to those of many parasitic cellular
organisms [1,2]. This giant virus exhibits several genes for
translation system components [3], and its particle con-
tains both DNA and RNA molecules [2]. These features
both quantitatively and qualitatively challenge the
boundary between viruses and cells, and reignited a smol-

dering debate about the origin of viruses and their role in
the emergence of eukaryotes [4-9].

Mimivirus belongs to Nucleocytoplasmic large DNA
viruses (NCLDVs) [10]. From its basal position in the phy-
logenetic trees based on conserved NCLDV core genes
[1,2], the new "Mimiviridae" family was proposed for
mimivirus [11]. NCLDVs now include Mimiviridae, Phy-
codnaviridae, Iridoviridae, Asfarviridae and Poxviridae. Mim-
ivirus is the sole member of the Mimiviridae family. The
lack of known close relatives of mimivirus makes it diffi-
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cult to build the evolutionary history of its surprising fea-
tures. Is mimivirus one of many eccentric creatures in
nature such as Rafflesia, a parasitic plant in southeastern
Asia known for its gigantic flower [12]? Are the mimivirus
extraordinary characteristics linked to the origin of
eukaryotes [5]? Clearly, appraising the actual biological
significance of this exceptional virus requires the isolation
and characterization of additional members of the Mimi-
viridae family.

Mimivirus was initially isolated in amoebae sampled
from the water of a cooling tower. Following the circum-
stances of its discovery, mimivirus was suspected to be a
causative agent of pneumonia [13]. The presence of anti-
bodies recognizing mimivirus in the sera of patients with
community or hospital-acquired pneumonia was
reported [14,15]. However, no serological evidence of
mimivirus infection was found in hospitalized children in
Austria [16] and mimivirus has never been isolated from
an infected patient despite numerous attempts. In the lab-
oratory, mimivirus appears to infect only species of Acan-
thamoeba [17]. Acanthamoeba are ubiquitous in nature and
they have been isolated from diverse environments
including freshwater lakes, river waters, salt water lakes,
sea waters, soils and the atmosphere [18,19]. Mimivirus
relatives might thus exist everywhere.

Ghedin and Claverie identified sequences similar to mim-
ivirus genes in the environmental sequence library from
the Sargasso Sea [20]. This strongly suggested the exist-
ence of mimivirus relatives in the sea. More recently, we
found numerous additional "mimivirus-like" sequences
in the much larger metagenomic data set generated by the
Global Ocean Sampling Expedition (hereafter referred to
as GOS data; [21]) (Monier et al., manuscript in prepara-
tion). However, the analysis of metagenomic data (i.e.
short sequences from unknown and mixed organisms)
provides no insights into the hosts susceptible to harbor
the putative new species of Mimiviridae corresponding to
these sequences.

While continually monitoring the new occurrences of
mimivirus-like sequences in public databases, we recently
noticed that the type B DNA polymerase (hereafter
referred to as PolB) sequences of three lytic viruses from
Norwegian coastal waters were very similar to the PolB
sequence of mimivirus. The three viruses [CeV01 (Gen-
Bank accession: ABU23716), PpV01 (ABU23718), PoV01
(ABU23717)] were isolated from diverse marine unicellu-
lar algae: Chrysochromulina ericina, Phaeocystis pouchetii and
Pyramimonas orientalis, respectively [22,23]. C. ericina and
P. pouchetii are both haptophytes but phylogenetically dis-
tant and classified in different orders, i.e. Prymnesiales and
Phaeocystales. P. pouchetii forms dense and almost mono-
specific spring blooms while C. ericina thrive in mixed

flagellate communities and at cell densities usually not
attaining bloom levels [24,25]. P. orientalis is a prasino-
phyte belonging to the green algae. It has a worldwide dis-
tribution but the abundance is most often low with no
significant contribution to the overall phytoplankton bio-
mass [26,27]. The three algal viruses infecting these phy-
toplankters have all been classified as phycodnaviruses.

In this report, we first analyzed the distribution of mimi-
virus-like sequences found in the GOS data and mapped
them on the mimivirus genome. We then performed phy-
logenetic analyses which indicated a very close relation-
ship between the PolB sequences of mimivirus and the
three algal viruses (CeV01, PpV01, PoV01), as well as with
their homologs from the metagenomic data set.

Results
We first examined the presence of "mimivirus-like"
sequences in the GOS data composed of 7.7 million
sequencing reads. Based on a protocol similar to the one
used by Ghedin and Claverie [20], we identified 5,293
open reading frames (ORFs; ≥ 60 aa) that are closely
related to protein sequences encoded in the mimivirus
genome. Of 911 mimivirus protein coding genes, 229
(25%) showed closely related sequences in the GOS data.
The distribution of the number of GOS matches for each
of the 229 mimivirus genes is highly variable ranging
from 1 to 249 (ex. 249 hits for MIMI_R555 DNA repair
protein). These 229 mimivirus genes are distributed
widely along the chromosome, with an apparently higher
concentration in the central part of the genome (Fig. 1).
This part of the genome encodes many conserved genes
including most of the NCLDV core genes [2]. Mimivirus
possesses 26 NCLDV core genes (class I, II and III), of
which 17 had close homologs in the GOS data (Table 1
and Additional File 1). Phylogenetic trees for the
homologs of two class I core genes (L437, VV A32-type
virion packaging ATPase; L206/L207, VV D5-type ATPase)
confirmed the separate grouping of the mimivirus
sequences with their closest homologs found in the GOS
data (Fig. 2) Among the translation related genes of mim-
ivirus, mRNA cap binding protein gene (MIMI_L496) and
translation initiation factor eEF-1 gene (MIMI_R624) had
close homologs in the GOS data. Remarkably, 55 of the
229 mimivirus genes exhibiting a strong similarity in the
GOS data, correspond to ORFans (i.e. ORFs lacking
homologs in known species), further suggesting that their
GOS homologs belong to viruses closely related to mimi-
virus.

We next selected fourteen mimivirus PolB-like GOS-ORF
sequences that are long enough to be fully aligned with
homologs from different viruses including three algal
viruses, CeV01, PpV01 and PoV01. PolB sequences from
CeV01 (GenBank: ABU23716), mimivirus [28] and Heter-
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Table 1: A selected list of mimivirus genes with closely related sequences in the GOS data.

Mimivirus ORF Annotation Number of "mimivirus-like" sequences in 
the GOS data

NCLDV class I core genes
MIMI_L206 * Helicase III/VV D5-type ATPase (C-term) 139
MIMI_L207 * Helicase III/VV D5-type ATPase (N-term) 90
MIMI_R322 DNA polymerase (B family) 185
MIMI_R350 putative transcription termination factor, VV 

D6R helicase
90

MIMI_L396 VV A18 helicase 138
MIMI_R400 S/T protein kinase 32
MIMI_L425 Major capsid protein 7
MIMI_L437 VV A32 virion packaging ATPase 71
MIMI_R450 A1L transcription factor 28
MIMI_R596 Thiol oxidoreductase E10R 7
NCLDV class II core genes
MIMI_R339 TFII-like transcription factor 3
MIMI_R493 Proliferating Cell Nuclear Antigen 45
NCLDV class III core genes
MIMI_L244 Rpb2 1
MIMI_L364 SW1/SNF2 helicase (MSV224) 54
MIMI_R382 mRNA Capping Enzyme 189
MIMI_R429 PBCV1-A494R-like, 9 paralogs 145
MIMI_R480 Topoisomerase II 1
MIMI_R501 Rpb1 14
Translation
MIMI_L496 Translation initiation factor 4E, (mRNA cap 

binding)
11

MIMI_R624 GTP binding elongation factor eF-Tu 3
DNA repair
MIMI_L315 Hydrolysis of DNA containing ring-opened N7 

methylguanine
58

MIMI_L359 DNA mismatch repair ATPase MutS 44
MIMI_R406 Alkylated DNA repair 3
MIMI_L687 Endonuclease for the repair of UV-irradiated 

DNA
2

MIMI_R693 Methylated-DNA-protein-cysteine 
methyltransferase

9

Other genes with more than 100 
matches
MIMI_L250 putative transcription initiation factor IIB 143
MIMI_L251 Lon domain protease 110
MIMI_R303 NAD-dependent DNA ligase 163
MIMI_R325 Metal-dependent hydrolase (Chilo iridescent 

virus 136R)
136

MIMI_R354 Lambda-type exonuclease 147
MIMI_R355 Unknown 150
MIMI_L375 Unknown 130
MIMI_L377 putative NTPase I 133
MIMI_R409 Unknown 155
MIMI_L434 Unknown 103
MIMI_R453 TATA-box binding protein (TBP) 131
MIMI_L454 Unknown 119
MIMI_R555 putative DNA repair protein 249
MIMI_R563 Contains helicase conserved C-terminal 

domain (PFAM)
118

* Two ORFs (L206, L207) have been recently merged into a single ORF after the re-sequencing of the genomic region (SWISS-PROT: Q5UQ22, 
Stéphane Audic, personal communication).
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osigma akashiwo virus [29] contain an intein element at
the same location. These intein sequences were removed
to obtain a canonical multiple alignment of the PolB
sequences. This alignment confirmed the conservation of
all the known catalytic residues [28] of the polymerase
domain. A maximum likelihood tree obtained from the
alignment strongly supported the grouping of the mimivi-
rus PolB sequence, its homologs from the metagenomic
data and the PolB sequences from CeV01, PpV01 and
PoV01 (bootstrap value = 98%; Fig. 3). Similar levels of
bootstrap support were obtained by neighbor joining and
maximum parsimony approaches (99% and 80%, respec-
tively). Certain of the GOS-ORFs (nine GOS-ORFs) are
more closely related to PolB's from CeV01 and/or PpV01
(bootstrap value = 100%), while others appear to be more
closely related to PolB's from PoV01 and/or mimivirus.
The percentage of identical amino acid residues between
mimivirus PolB sequence and its GOS homologs in Figure
3 varies from 37% to 48%, suggesting a substantial level
of genetic diversity of the mimivirus relatives in the sea.
Mimivirus PolB sequence exhibits 41%, 31%, 45% iden-
tity with the PolB sequence of the three algal viruses
CeV01, PpV01, and PoV01, respectively. The phylogenetic
tree presented in Figure 3 supports the monophyletic
grouping for iridoviruses (100%) as well as for poxviruses
(75%). In contrast, the inclusion of the new mimivirus-
like PolB sequences in the phylogenetic analysis appar-
ently breaks the monophyletic grouping of viruses previ-
ously classified as member of the phycodnavirus family,
robustly clustering the CeV01, PpV01, and PoV01 viruses
with mimivirus.

Discussion
CeV01, PpV01 and PoV01 were initially isolated from
Norwegian coastal waters. An electron cryomicroscopic
analysis revealed the icosahedral capsid of PpV01 particles
with a maximum diameter of 220 nm [23]. Icosahedral
morphology was also suggested for CeV01 (160 nm) and
PoV01 (220 × 180 nm) from the observations by trans-

mission electron microscopy [22]. The genomes of these
viruses are composed of double-stranded DNA, with esti-
mated sizes being 510-kb for CeV01, 485-kb for PpV01
and 560-kb for PoV01 [22,30]. The genome sizes are sub-
stantially larger than the currently sequenced largest phy-
codnavirus genome (i.e. 407-kb for EhV-86, [31]. Electron
microscopy observations of infected cells indicate that
viral assembly takes place in the cytoplasm of all three
host cells [22,32]. Given these features, these three lytic
algal viruses are tentatively classified as phycodnaviruses.

Previous studies have indicated a relatively close phyloge-
netic relationship [2] and a similarity in gene composition
[10] between phycodnaviruses and mimivirus. Several
phycodnaviruses exhibit the largest genome sizes (>300-
kb) after mimivirus [4]. Claverie et al. have hypothesized
that Phycodnaviridae is a promising source of giant viruses
[4]. In this study, we present phylogenetic evidence for a
close relationship between the PolB sequences of three
algal viruses (CeV01, PpV01, PoV01) and mimivirus, and
for the segregation of these from homologs of other
known viruses. PolB is one of the NCLDV core genes, and
serves as a phylogenetic marker for the classification of
large DNA viruses [33,34]. There now seems to be a con-
tinuum between the giant mimivirus and some algal
viruses at least with respect to the sequence of this essen-
tial viral enzyme. The large genome sizes of CeV01,
PpV01, and PoV01 might be another indication of their
close evolutionary relationship with mimivirus. Phyloge-
netic classification of phycodnaviruses and mimiviruses
(including the split of Phycodnaviridae or merging of Mim-
iviridae and Phycodnaviridae) may have to be revisited
based on sequence information from other genetic mark-
ers such as major capsid proteins (Larsen et al. manuscript
in preparation) and other NCLDV core genes.

Our discovery of the close relationships among PolB
sequences of mimivirus and the three algal viruses as well
as their homologs from metagenomic data now sheds

Mimivirus-like sequences in the GOS metagenomic dataFigure 1
Mimivirus-like sequences in the GOS metagenomic data.
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new light on the nature of the mimivirus relatives in the
sea. The mimivirus-like sequences in the metagenomic
data are likely to originate from large DNA viruses closely
related to mimivirus, CeV01, PpV01 and PoV01. Proba-
bly, there is a substantial genetic variation among these
putative viruses. The fact that the host algae of CeV01,
PpV01 and PoV01 have worldwide distributions, suggests
that these putative viruses might not be necessarily associ-
ated with marine amoebae, but rather to algal species
closely related to C. ericina, P. pouchetii or P. orientalis.

Mimivirus was proposed to be a human pathogen causing
pneumonia. However, the close relationship of mimivirus
with viruses infecting phytoplankton does not favor this
hypothesis, as eukaryotic large DNA virus groups (e.g. at
the level of genus) usually correspond to a relatively nar-
row hosts range. Given the strong cytopathic effect of
mimivirus on its amoebal host and its phylogenetic affin-
ity with certain algal viruses, we now begin to suspect that
the natural reservoir of mimivirus might be some algae.
Indeed, algae are frequently found together with acan-
thamoeba, in anthropogenic ecosystems such as air-con-
ditioning units.

Maximum likelihood trees for two NCLDV class I core genesFigure 2
Maximum likelihood trees for two NCLDV class I core genes. (A) Homologs for the mimivirus L437 (VV A32-type virion pack-
aging ATPase). (B) Homologs for the mimivirus L206/L207 (VV D5-type ATPase). Nodes with rectangle marks correspond to 
the sequences from the GOS data. These trees are unrooted.
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If horizontal transfer of viral PolB genes does occur, it
would become difficult to interpret the PolB phylogeny as
representing the true relationships between viruses. How-
ever, to the best of our knowledge, no instance of lateral
transfer of PolB genes between distantly related eukaryotic
large DNA viruses has been documented. The determina-
tion of the whole genome sequences of CeV01, PpV01

and PoV01 would definitely help clarifying their evolu-
tionary relationship with mimivirus.

Conclusion
Three algal viruses (CeV01, PpV01 and PoV01) possess
DNA polymerase genes that are closely related to the DNA
polymerase from the giant mimivirus. This suggests that

Maximum likelihood tree of the PolB sequences from NCLDV and the GOS dataFigure 3
Maximum likelihood tree of the PolB sequences from NCLDV and the GOS data. Nodes with rectangle marks correspond to 
the sequences from the GOS data. This tree is rooted by phage sequences.
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the numerous "mimivirus-like" sequences detected in
marine metagenomic data might originate from viruses
infecting phytoplankton species related to C. ericina, P.
pouchetii or P. orientalis, rather than marine amoebae.
These results imply new approaches in attempting the iso-
lation of additional, and eventually closer, relatives of
mimivirus.

Methods
The scaffold sequences for the combined assembly of the
GOS metagenomic data were downloaded from the CAM-
ERA web site [35]. We extracted 21,406,171 ORFs (≥ aa)
from the scaffolds using the EMBOSS/getorf program
[36].

We defined "mimivirus-like ORFs" based on the follow-
ing two-way BLASTP searches [37]. First, the amino acid
sequences of the ORFs were searched against the UniProt
sequence database release 11.3 (as of July 2007, [38])
using BLASTP (E-value < 0.001). This search resulted in
6,212 ORFs with its best hit to a mimivirus protein in the
database. For each of the 6,212 ORFs, we extracted a seg-
ment of the mimivirus sequence that was aligned with the
ORF by BLASTP. Next, this partial mimivirus sequence
was searched against the UniProt database (excluding
mimivirus entries in the database). If the best score
obtained by this second BLASTP search is lower than the
BLASTP score obtained by the first BLASTP search, we kept
the ORF as "mimivirus-like". Accordingly, we obtained
5,293 mimivirus-like ORFs. The UniProt database does
not contain the three entries used for the phylogenetic
study (i.e. ABU23716, ABU23717, ABU23718).

Mimivirus ORFans were defined by the lack of detectable
homologs in the UniProt database using BLASTP with an
E-value threshold of 0.001.

Multiple sequence alignment was constructed using MUS-
CLE [39]. All the gap-containing sites in the alignment
were excluded in the phylogenetic analysis. We used only
the polymerase domain sequences, and removed exonu-
clease domain sequences. The delineation of the polymer-
ase domains were performed using the Pfam entry
PF00136 [40]. Intein sequences were also removed from
Mimivirus, HaV, CeV01 PolB sequences. Maximum likeli-
hood phylogenetic analysis was performed using PhyML
[41] with JTT substitution model and 100 bootstrap repli-
cates. Neighbor joining analysis was performed using
BIONJ [42]. The above methods are available from the
Phylogeny.fr server [43]. Maximum parsimony analysis
was performed using PHYLIP/PROTPARS [44].

List of abbreviations used
CeV: Chrysochromulina ericina virus; PpV: Phaeocystis pou-
chetii virus; PoV: Pyramimonas orientalis virus; NCLDV:

Nucleocytoplasmic large DNA virus; GOS: Global Ocean
Sampling Expedition; PolB: type B DNA polymerase; ORF:
open reading frame.
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