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Abstract
Background: The analysis of the nonstructural (NS) gene of the highly pathogenic (HP) H5N1
avian influenza viruses (AIV) isolated in Sweden early 2006 indicated the co-circulation of two sub-
lineages of these viruses at that time. In order to complete the information on their genetic features
and relation to other HP H5N1 AIVs the seven additional genes of twelve Swedish isolates were
amplified in full length, sequenced, and characterized.

Results: The presence of two sub-lineages of HP H5N1 AIVs in Sweden in 2006 was further
confirmed by the phylogenetic analysis of approximately the 95% of the genome of twelve isolates
that were selected on the base of differences in geographic location, timing and animal species of
origin. Ten of the analyzed viruses belonged to sub-clade 2.2.2. and grouped together with German
and Danish isolates, while two 2.2.1. sub-clade viruses formed a cluster with isolates of Egyptian,
Italian, Slovenian, and Nigerian origin. The revealed amino acid differences between the two sub-
groups of Swedish viruses affected the predicted antigenicity of the surface glycoproteins,
haemagglutinin and neuraminidase, rather than the nucleoprotein, polymerase basic protein 2, and
polymerase acidic protein, the main targets of the cellular immune responses. The distinctive
characteristics between members of the two subgroups were identified and described.

Conclusion: The comprehensive genetic characterization of HP H5N1 AIVs isolated in Sweden
during the spring of 2006 is reported. Our data support previous findings on the coincidental
spread of multiple sub-lineage H5N1 HPAIVs via migrating aquatic birds to large distance from their
origin. The detection of 2.2.1. sub-clade viruses in Sweden adds further data regarding their spread

Published: 6 October 2008

Virology Journal 2008, 5:113 doi:10.1186/1743-422X-5-113

Received: 22 August 2008
Accepted: 6 October 2008

This article is available from: http://www.virologyj.com/content/5/1/113

© 2008 Kiss et al; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 9
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18837987
http://www.virologyj.com/content/5/1/113
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


Virology Journal 2008, 5:113 http://www.virologyj.com/content/5/1/113
in the North of Europe in 2006. The close genetic relationship of Swedish isolates sub-clade 2.2.2.
to the contemporary German and Danish isolates supports the proposition of the introduction and
spread of a single variant of 2.2.2. sub-clade H5N1 avian influenza viruses in the Baltic region. The
presented findings underline the importance of whole genome analysis.

Background
The first reports of outbreaks caused by highly pathogenic
avian influenza viruses (HPAIV) of H5N1 subtype in 1996
originated from southern China [1]. Systematic influenza
surveillances showed that distinct genetic sub-lineages of
H5N1 HPAIVs, reflecting on their geographic origin, have
been established since then among domestic poultry and
have been transmitted to long distances by migratory
waterfowl [2,3]. Europe experienced a peak of outbreaks
of H5N1 HPAI in domestic poultry and wild birds in
March 2006 – that was supposedly the consequence of an
unusual westward movement of waterfowl from the Black
Sea area [4-6]. The recent avian influenza virus strains of
European-Middle Eastern-African (EMA) origin were
assigned to three clades (EMA-1-3) based on the phylog-
eny of the complete genomes of the isolates [7], which are
referred as sub-clades 2.2.1.-2.2.3. according to the more
recent nomenclature [8]. Further, clade 2.2. was classified
into three sub-clades: Clade 2.2.1. appeared in Egypt,
southern Germany, Italy, Mongolia, and some regions in
sub-Sahara Africa. Clade 2.2.2. viruses were detected in
northern Germany, Denmark, Sweden, Scotland, and
Nigeria, while clade 2.2.3. viruses were demonstrated in
India, Afghanistan, Italy, and Iran [9]. Simultaneous
transmission of different strains was reported in several
European countries such as Sweden [10], Germany [9],
France and Italy [11]. Characterization of the Swedish
H5N1 HPAIV isolates based on the nonstructural (NS)
gene nucleotide sequences demonstrated that all
belonged to clade 2.2. The majority of them clustered
together with clade 2.2.2., viruses belonging to clade
2.2.1. were also introduced into Sweden [10].

The aim of this study was to further investigate the Swed-
ish H5N1 HPAI viruses by sequencing twelve selected iso-
lates representing four east-coast provinces of the area
affected by the epidemic during March-April 2006. The
sequence information was used to study the evolution
and epidemiology of the outbreak of H5N1 in Europe
during 2006. Further, a H5N1 strain isolated from a mink
was investigated to reveal any possible adaptation
towards mammals.

Results and discussion
Phylogenetic analysis
According to the Influenza A Virus Genotype Tool [12] the
studied genes of the investigated Swedish isolates

belonged to the following lineages: PB2 (K), PB1 (G), PA
(D), HA (5J), NP (F), NA (1J), MP (F), NS (1E).

All twelve Swedish H5N1 isolates in this study belonged
to the 2.2. clade and the phylogenetic trees of all eight
genes had similar topologies. Representative trees of the
HA and PB2 genes are shown (Figures 1 and 2). These data
along with those generated from the other genes con-
firmed the close genetic relationship of H5N1 HPAIVs iso-
lated in the northern region of Germany, Denmark and
Sweden in early 2006. Two isolates out of the Swedish
ones (A/tufted duck/Sweden/599/06 and A/herring gull/
Sweden/1116/06) grouped together with sub-clade 2.2.1.
viruses while the other ten belonged to sub-clade 2.2.2.
No viruses of sub-clade 2.2.3. were identified among the
studied ones.

HA amino acid residue 403 was observed to characterize
2.2.1. (isolates mainly from Southern parts of Germany)
and 2.2.2. (German isolates from the North) sub-clade
German H5N1 viruses because the former group con-
tained mainly D while the latter N at this position. All
sub-clade 2.2.2. Swedish H5N1 viruses possessed N at HA
403 position together with A/tufted duck/Sweden/599/06
sub-clade 2.2.1. isolate, and only 2.2.1. isolate A/herring
gull/Sweden/1116/06 had D at this site.

As far as the NA gene concerned residues 34 I/V, 44 C/R,
305 S/N appeared to be discriminative of sub-clade 2.2.1./
2.2.2. isolates, respectively, consistently in case of Swedish
viruses and predominantly in the analyzed additional 100
sequences. Also, at NA amino acid position 305 sub-clade
2.2.1. Swedish isolates uniquely had an S while all other
viruses that were analyzed (sub-clade 2.2.2. and 2.2.3.
viruses) possessed N at this position due to a AAT→AGT
transition. Sub-clade 2.2.2. Swedish viruses, and A/great
crested grebe/Denmark/7498/06, A/grey lag goose/Den-
mark/6692/06, A/buzzard/Denmark/6370/06, A/tufted
duck/Denmark/6540/06, and A/swan/Germany/R65/06
isolates possessed D at NA position 316 while all other
analyzed viruses had G at this site.

The separation of the Swedish H5N1 HPAIVs into two
subgroups was already demonstrated on the basis of NS
gene sequences [10] and this finding was consistent for all
eight genes of the isolates (herein summarized in Addi-
tional file 1). No reassortant variant was found among the
sequenced twelve Swedish isolates.
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Evolutionary relationships of HA genes of Swedish HP H5N1 AIVs compared to genetically closely related H5N1 viruses iso-lated in EuropeFigure 1
Evolutionary relationships of HA genes of Swedish HP H5N1 AIVs compared to genetically closely related 
H5N1 viruses isolated in Europe. The phylogenetic trees were generated by maximum parsimony analysis (neighbor-join-
ing revealed similar tree topologies). Bootstrap values of 1000 resamplings in per cent are indicated at key nodes. The Swedish 
viruses are highlighted by bold letters.
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Evolutionary relationships of PB2 genes of Swedish HP H5N1 AIVs compared to genetically closely related H5N1 viruses iso-lated in EuropeFigure 2
Evolutionary relationships of PB2 genes of Swedish HP H5N1 AIVs compared to genetically closely related 
H5N1 viruses isolated in Europe. The phylogenetic trees were generated by maximum parsimony analysis (neighbor-join-
ing revealed similar tree topologies). Bootstrap values of 1000 resamplings in per cent are indicated at key nodes. The Swedish 
viruses are highlighted by bold letters.
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Molecular characterization
Characteristic findings regarding the preservation/substi-
tutions at particular amino acid positions along with
potential distinctive molecular markers for the Swedish
H5N1 viruses are summarized in Additional file 1.

Polymerase genes
A single amino acid substitution, from glutamic acid (E)
to Lysine (K) in position 627 in PB2 is a determinant of
mammalian host range [13,14]. Most avian isolates have
E in this position. The substitution to K in this position
converts a nonlethal H5N1 influenza A virus isolated
from a human to a lethal virus in mice [13]. Among the
H5N1 HPAIV sequences we investigated a larger propor-
tion of those originating from 1998–2005 had PB2-E627
than more recent isolates. The 2.2.2.-like Swedish viruses
along with the most closely related Danish and German
isolates encoded K at this site while the two sub-clade
2.2.1.-like Swedish isolates (A/tufted duck/Sweden/599/
06 and A/herring gull/Sweden/1116/06) possessed E at
position 627. The mutations D701N and S714R in PB2
contribute to virulence by enhancing polymerase activity
[15]. All Swedish isolates had D and S at position 701 and
714, respectively.

PB1-F2 has been identified as a proapoptotic mitochon-
drial protein expressed from a second open reading frame
of the PB1 gene [16] and it has been shown to contribute
to viral pathogenesis in mice [17]. Aspargine in position
66 in PB1-F2 has been demonstrated to play a key role in
the pathogenicity of H5N1 viruses [18] and its presence
was determined in all Swedish viruses. Furthermore,
Swedish 2.2.1. subclade viruses had a K26Q substitution
compared to 2.2.2. subclade viruses. Isolate A/tufted
duck/Sweden/599/06 solely contained a T323I and a
H562P, while A/herring gull/Sweden/1116/06 a V719M
substitution, respectively. The H5N1 viral polymerase
activity is enhanced by the presence of PB2 701N and
714R, PB1 13P, PA 615N, further, NP 319K and 678N
[15]. Among the Swedish isolates the presence of PB1 13P
was determined.

Surface glycoprotein genes
The HA sequences of isolates A/Mute swan/Sweden/827/
06, A/Canada goose/Sweden/978/06, and A/peregrine/
Denmark/6632/06 proved to be identical. The amino acid
sequence flanking the cleavage site of the HA gene was
PQGERRRKKRGLF alike all other 2.2. viruses with the
exception of some French isolates that had the PQGER-
KRKKR/G sequence [11]. The identified amino acid mark-
ers of H5N1 influenza viruses isolated at Qinghai and
Poyang Lakes from migratory birds (HA-I99, HA-N268,
and NA-R110) were present in all Swedish isolates as well
[11]. No "sub-clade"-specific amino acid changes were
identified in the HA among the two subgroups of Swedish

isolates. All the Swedish isolates had the 238Q and 240G
(numbered from the H5 start codon) which indicates pre-
ferred receptor specificity for the avian α-(2,3) linkage to
galactose [19,20]. All HA sequences contained 6 N-linked
potential glycosylation sites, as analysed with NetNglyc
server (threshold: 0.5) at the following positions: 27, 39,
181, 302, 500, 559; none of them is adjacent to the cleav-
age site. Furthermore, the substitutions S145L and A172T,
which are associated with viral adaptation to poultry [21]
were not determined in association with the Swedish
H5N1 viruses.

The amino acid substitutions R178I and I248V in HA that
were found in the domestic birds of the Danish isolates
[22] were not present in any of the Swedish viruses, nor
the V73I substitution that was found in the Danish swan
isolates. However, the D387N substitution found in the
German and most of the Danish isolates was also present
in the Swedish isolates.

The H5N1 virus isolated from a mink (A/Sweden/mink/
2006/V907) was examined in order to reveal any possible
adaptation towards mammals. As a result, a unique
E513G substitution was found in the HA gene but no sub-
stitutions that could be regarded as host-related were
found, which is consistent with previous findings, i.e. that
a single passage in mammals is not necessarily associated
with changes in receptor-binding sites [9].

As in the other 2.2. viruses, NA-R110 was present in the
Swedish isolates, and a 20 amino acid deletion was also
found at positions 49–68 similarly to the majority of the
recent H5N1 strains [22]. The N228S substitution was
present only in A/Herring gull/1116/06 Swedish 2.2.1.
virus (alike with several other member of the sub-clade)
and not in A/Tufted duck/Sweden/599/06 isolate. These
two isolates differed further in amino acid residues 414
and 434 by bearing N/K and S/G corresponding to A/Her-
ring gull/1116/06 and A/Tufted duck/Sweden/599/06
viruses, respectively. Interestingly, while the Danish and
German isolates shared unique amino acids in the NA
(G336D), PB1 (K531R) and NS2 (G63E) proteins the
Swedish isolates were not homogenous in this regard:
although NA-G336D was a characteristic of the Swedish
viruses too, two isolates retained the PB1-531K, and NS2-
63G. Reported substitutions in NA, inducing oseltamivir
resistance [9], were not found in the Swedish isolates.

The NP and M genes
The NP-10Y amino acid residue, which may affect the
pathogenicity of AIVs [15], was present in all of the Swed-
ish isolates. Concerning the M2 gene, all Swedish viruses
contained the L26-V27-A30-S31-G34 amino acid pattern,
thus, no adamantan drug resistant variant was revealed
[9]. Substitutions S64A and E66A that were present in the
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M2 genes of H5N1 AIV isolates from Hong Kong [11] did
not appear in Swedish viruses.

The complete characterization of the NS genes from these
isolates was described by Zohari et al., [10], and is not fur-
ther discussed here.

The effect of substitutions on the predicted antigenicity
was investigated among the Swedish isolates for the sur-
face glycoproteins (HA and NA) and for those primarily
targeted by the host's cellular immune response (PB2, PA,
and NP [23]) (Table 1). The observed amino acid altera-
tions affected the predicted antigenic epitopes in few
cases. Regarding the HA in all but one cases 22 epitopes
were predicted by the Kolaskar-Tongaonkar approach
[24], the exception was strain A/herring gull/Sweden/
1116/06, bearing a V201M substitution, which resulted in
splitting the corresponding GKLCDLDGVKPLILRDCS-
VAGW predicted epitope (between amino acid residues
55–76) into two smaller ones: GKLCDLD (aa residues
55–61) and PLILRDCSVAGW (aa residues 65–76). The
predicted numbers of epitopes in NA were higher for
Swedish 2.2.1. viruses than for 2.2.2. viruses (19–20 com-
pared to 17–18). However, in this case no splitting of
epitope(s) was predicted due to a change in the amino
acid sequence, but rather, the substitutions could be asso-

ciated with the appearance of newer epitopes (data not
shown). No changes in the number of predicted epitopes
was found in for PB2 and PA. In general, the Swedish
viruses coded for 15 epitopes on the NP with the only
exception of sublineage 2.2.2. virus A/eagle owl/Sweden/
V618/06, which had an additional epitope of seven
amino acids between residues 22–28. In summary, the
detected amino acid changes among the Swedish viruses
appeared to have greater effect on the composition of pro-
teins targeted by the humoral than those targeted by the
cellular immune responses, in particular, on the NA gene.

Conclusion
The incursion of H5N1 HPAIV strains falling into three
sub-clades into Europe throughout late 2005 and 2007
has been demonstrated earlier [7]. Further reports and the
analysis of the corresponding published sequences
revealed the introduction of multiple variants of H5N1
HPAIV into several European countries, such as sub-clade
2.2.1. and 2.2.2. viruses into Germany, France, and Swe-
den [6,9,11,25], and subclade 2.2.1. and 2.2.3. viruses
into Italy [7]. The Swedish 2.2.1. sub-clade viruses were
closely related to A/Cygnus olor/Italy/808/2006 and A/
mallard/Italy/835/2006 and shared several common
nucleotide and amino acid motifs, among them, impor-
tantly, the PB2-627E, suggesting that they derived from an

Table 1: Differences in number of nucleotide and amino acid compositions, synonymous and nonsynonymous nucleotide substitutions, 
and predicted antigenic epitopes between sub-clade 2.2.1.-2.2.2. Swedish H5N1 avian influenza viruses.

Gene Region of 
comparison/
nucleotide/

Difference between sub-clade 2.2.1.-2.2.2. 
Swedish viruses

Number of synonymous/
nonsynonymous nucleotide changes

Average number of predicted 
antigenic epitopes

Average number of 
nucleotide 
differences

Average number of 
amino acid 
differences

2.2.1. 2.2.2. 2.2.1. 2.2.2.

PB2 73–2193 23.7 4.5 0/1 6/4 32 32

PB1 22–2199 20.1 6.9 6/3 10/4 Nd Nd
PB1-F2: 1.1 1.1 0/0 0/1

PA 60–2091 13 3.2 1/0 3/2 28 28

HA 49–1636 15.5 1.5 1/2 5/5 22.5 22

NP 1–1497 16.1 6.2 2/5 8/10 15 15.1

NA 1–1344 14.8 8.6 10/6 9/13 19.5 17.8

MP MP1: 1–950 12 4.2 3/2 9/14 Nd Nd
MP2: 1–262 5.3 2.9 0/2 4/6

NS NS1: 1–678 9.3 3.7 1/1 8/14
NS2: 1–366 6.8 3.5 1/1 9/11 Nd Nd

Nd: Not done
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earlier progenitor of Southeast Asian origin. The detection
of these H5N1 HPAIV strains in Sweden adds further data
regarding the spread of 2.2.1. viruses in the North. The
accumulation of particular mutations reflects that pre-
sumably these viruses have been circulating in the South
before the transmission to the northern parts of Europe
[9]. Sub-clade 2.2.2. Swedish H5N1 HPAIV isolates
proved to be closely related to the contemporary German
and Danish isolates, which supports the proposition of
the introduction and spread of a single variant of 2.2.2.
sub-clade H5N1 avian influenza viruses in the Baltic
region.

The number and composition of the immune reactive
peptides predicted by computing indicated that the sur-
face glycoprotein genes were more affected than the nucle-
oprotein, polymerase basic protein 2, and polymerase
acidic protein, the main targets of the cellular immune
responses.

The above observations, alike those with similar objec-
tives, highlight and warrant the importance of whole
genome sequencing of HPAIV isolates, in order to
improve the surveillance and preparedness against highly
pathogenic avian influenza.

Methods
Viral isolates
The isolates involved in this study are shown in Table 2.
They were collected during the HPAI outbreak in North-
ern Europe in spring 2006 [10].

RT-PCR and nucleotide sequencing
The collection of specimens, RNA extraction, and RT-PCR
amplification of the NS1 sequences was described earlier
and the same RNA batches were used for this study that
served as targets in the previous investigation [10]. In
order to obtain possibly the full length nucleotide
sequences of the coding regions of the influenza virus iso-
lates several approaches were combined that comprised of
either published protocols/primers [22,26,27] or those
developed and used by the Influenza Genome Sequencing
Project [[28]; the primer sequences were kindly provided
by David Spiro, The J. Craig Venter Institute, Rockville,
Maryland, USA), or designed by ourselves. The primer and
PCR protocols for sequencing are available from the
authors upon request.

Phylogenetic analysis
For the phylogenetic analyses, a set of H5N1 AIVs that
were isolated in Europe, Asia and Africa in 2005 – 2006
was selected and used for all genes. These were collected
from the Influenza Virus Resource at NCBI [29] and these
were included in the phylogenetic analyses.

Sequence assembly, multiple alignment and alignment
trimming were performed with the CLC Combined Work-
bench 3.0.2. bioinformatics software (CLC bio A/S,
Aarhus, Denmark). Distance based neighbor joining and
character based maximum parsimony phylogenetic trees
were generated using the Molecular Evolutionary Genetics
Analysis (MEGA) software v.4.0. [30] with 1000 bootstrap
replicates. For the neighbor-joining trees, the Kimura-2
substitution model was used. Other models were also
tested which showed similar topologies. The evolutionary
divergence between the sub-clades was investigated by
pairwise analyses over all sequence pairs between the
groups by using the MEGA software also. The occurrence
and distribution of synonymous and nonsynonymus sub-
stitutions was investigated by the DNA Sequence Poly-
morphism software (Version 4.50.3) software [31].
Computational analysis of the antigenic sites was carried
out by using the Kolaskar-Tongaonkar method [24].

Nucleotide sequence accession numbers
Nucleotide sequences from Swedish H5N1 virus isolates
included in this study have been submitted to GenBank
with the following accession numbers: PB2: EU889035–
EU889046, PB1: EU889047–EU889058, PA: EU889059–
EU889070, HA: EU889071–EU889082, NP: EU889083–

Table 2: List of the H5N1 HPAIV isolates used in this study

Isolate name Species

A/tufted duck/Sweden/V526/06 Aythya fuligula

A/goosander/Sweden/V539/06 Mergus merganser

A/tufted duck/Sweden/V599/06 Aythya fuligula

A/eagle owl/Sweden/V618/06 Bubo bubo

A/smew/Sweden/V820/06 Mergus albellus

A/mute swan/Sweden/V827/06 Cygnus olor

A/mink/Sweden/V907/06 Mustela vison

A/canada goose/Sweden/V978/06 Branta canadensis

A/tufted duck/Sweden/V998/06 Aythya fuligula

A/tufted duck/Sweden/V1027/06 Aythya fuligula

A/herring gull/Sweden/V1116/06 Larus argentatus

A/eagle owl/Sweden/V1218/06 Bubo bubo

For further details of the viruses see reference Zohari et al., 2008 
[10].
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EU889094, NA: EU889095–EU889106, M: EU889107–
EU889118.
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