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Abstract

With the prospect of another pandemic Influenza fresh in our consciousness, the pathogenic nature
of the Influenza A virus and its ability to induce high rates of mortality are ever more pertinent.
Recently a novel protein encoded by an alternate reading frame in the PBl Gene segment of
Influenza A virus has been discovered and in turn shown to enhance viral virulence in a mouse
model [I]. This protein has been shown to specifically target and destroy alveolar macrophages [2].
This review suggests that this protein, present in all previous pandemic strains, may reappear as a
virulence factor in a subsequent pandemic strain. This PBI-F2 protein will enhance the mortality
rate of the virus by increasing the likelihood of a secondary bacterial infection, which is the primary
cause of death to a patient infected with Influenza A.

Background

An intrinsic property of all viruses is their need to either
subvert and/or subdue the host immune response to
establish a productive replication cycle. The mechanism
by which this avoidance proceeds is greatly varied
throughout the phyla of viruses; however either must
occur in order for a virus to spread and propagate. The
enhancement of this ability to subvert and disable host
immunity is directly correlated to increased viral patho-
genicity in the host [3]. For example the 3C viral protease
of Poliovirus cleaves the p65-RelA subunit of NF-xB, a
transcription factor involved in the cellular innate
immune response [4]. Another human pathogen, Influ-
enza A virus, has many well-elucidated mechanisms used
to avoid both the innate and adaptive human immune
responses. Since the current concern over the possible
emergence of an Influenza A virus pandemic has arisen,
Influenza A virus's mechanisms of evasion are of great sig-
nificance. The main culprit of evasion on the cellular level

is the NS1 protein, which is responsible for inactivation of
the host innate immune response by preventing activa-
tion of PKR from INF-o/f signaling, thus allowing replica-
tion and viral protein synthesis to proceed unabated in
the host cell [5]. Additionally, Influenza A virus has the
ability to escape the host's humoral immunity by a phe-
nomenon known as antigenic drift. This mutation driven
phenomena produces changes both in amino acids and
glycosylation patterns of the two virus envelope glycopro-
teins, hemagglutinin (HA) and neuraminidase (NA) [6].
This concept of antigenic drift is significant because it con-
tributes to the continued, seasonal pathogenicity associ-
ated with epidemic Influenza A virus, i.e. the need for a
new flu vaccine each year. Since Influenza manipulates
and creates new antigenic determinates via mutations, the
human population becomes steadily immunologically
inept, where by circulating antibodies are incapable of, or
have a reduced capacity to, neutralize a repeat infection. A
more threatening avoidance of humoral and innate cellu-
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lar immunity is the ability of Influenza A virus to reassort
via the phenomena of antigenic shift. Since Influenza A
virus is an eight-segmented minus-sense RNA virus, its
segmented nature allows for the swapping and exchange
of gene segments between different strains. Specifically
this occurs by human influenza viruses swapping the HA
glycoprotein, NA glycoprotein or polymerase (PB1, PB2,
PA) segments with those of avian and pig Influenza A
viruses. Therefore, a reassortment of gene segments has
occurred creating an entirely novel Influenza A virus strain
capable of infecting humans. [6]. In turn, the global
human population is entirely immunologically naive to
these novel viruses and these viruses become the cause of
pandemics that result in a vast number of human deaths;
the most notably of which was the 1918 Spanish Flu that
killed an estimated 30 to 50 million people [7].

Influenza A virus and the PBI-F2 protein

Other additional mechanisms of host defense manipula-
tion and avoidance by Influenza A virus exist including a
novel alternate reading frame recently discovered in the
PB1 polymerase gene segment. This reading frame is
found in select Influenza A viruses and has been shown to
impact host defense mechanisms and in turn enhance
pathogenicity in vivo [1]. This protein, named PB1-F2, has
an apoptotic induction effect on macrophages, thus
reducing their ability to contribute to an immune
response [8]. It has been previously suggested that this
PB1-F2 protein contributes to viral pathogenicity solely
because of it causes an inhibition of viral clearance, thus
increasing cytoxicity [1]. However, it is possible that by
directly targeting professional antigen presenting cells for
destruction, the PB1-F2 can also contribute to Influenza A
virus pathogenicity by increasing the probability of an
opportunistic secondary bacterial infection. The major
source of mortality associated with Influenza A infection
is indeed these secondary bacterial infections [9].

The discovery of a novel protein that contributes to an
increase in Influenza A virus pathogenicity is of great con-
cern due to the impact that Influenza A virus has on both
human health as well as on the economy. Globally it is
estimated that between 300,000 to 500,000 people may
die annually due to influenza virus infections [10]. In the
United States, influenza viruses are the cause of wide-
spread mortality and morbidity. For example, influenza
viruses cause approximately 35,000 deaths each year in
the United States [11]. In addition to the impact on
human health, influenza virus infections are responsible
for an estimated 200,000 hospitalizations, thus impacting
the United States economy by an approximate cost of 23
billion dollars each year [12]. Although a productive viral
infection can elicit disease in all age groups, serious, life-
threatening complications are markedly increased in chil-
dren and elderly persons 65 years of age and over. By fur-
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ther elucidation of the wvarious mechanisms that
contribute to the pathogenic nature of Influenza A virus,
there can be a beneficial impact on human health and the
economy by way of enhancing vaccine development or
increasing the effectiveness of antiviral drugs.

Specifically, Influenza A virus is an enveloped, eight seg-
mented minus-sense RNA virus, that is a member of the
orthomyxoviridae genus of viruses. Unique to Influenza A
virus, compared to other lytic mammalian RNA viruses, is
that all mRNA synthesis and genome replication occurs in
the nucleus of the infected host cell [13]. Furthermore,
Influenza A virus replication proceeds rapidly, evident by
the completion of a replication cycle in 10 hours. Prima-
rily Influenza A virus infects the respiratory tract via the
inhalation of aerosols containing infectious virions. The
infection and replication of Influenza A virus is cytolytic
and is usually limited to superficial epithelial cells of the
upper and lower respiratory tract. However, secondary
sites of infection can occur, such as infections of nervous
tissue, which results in Reye's syndrome- a condition char-
acterized by acute encephalopathy [14].

PBI-F2 aiding in secondary bacterial infections?

Despite Influenza A virus's speedy replication cycle and
cytolytic properties, the major cause of death associated
with an Influenza A virus infection is secondary bacterial
pneumonia. The major pathogens associated with this
complication are Streptococcus pneumoniae, Staphylococcus
aureus, and Haemophilus influenzae [9]. One of the symp-
toms usually associated with flu, dry cough, is indicative
of the loss of ciliated, mucous-producing epithelial cells
as a result of the viral infection destroying these cells lin-
ing the respiratory tract [15]. The mucus produced by
these cells in a normal, healthy individual serves to clear
invading microorganisms as well as particulate matter
[16]. However, during an Influenza A virus infection this
clearance function is significantly impaired and therefore
opportunistic bacteria can reside in the lung longer, and
in turn establish a secondary infection which results in the
increased death rate.

Besides the destruction of mucus producing lung epithelia
cells, another possible contribution to secondary bacterial
infection as the result of Influenza A infection is the tar-
geted elimination of alveolar macrophages by the Influ-
enza PB1-F2 protein. Initially precursors to macrophages,
monoblasts, are produced in the bone marrow and
secreted into the bloodstream where they become mono-
cytes. Once monocytes exit the circulation and migrate
into tissue, they differentiate into tissue specific resident
macrophages, such as Kuppfer cells in the liver or alveolar
macrophages in the lung [17]. These resident macro-
phages serve an immuno-surveillance function as a part of
innate immunity, constantly eliminating foreign antigens
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from tissues and organs [18]. Alveolar macrophages,
which are located at the air-tissue interface in the lung, are
the initial cells that interact with inhaled microorganisms
and particulate matter [19]. During normal respiration a
human breathes in an estimated 7,000 liters of air per day
[20]. Therefore, the alveolar macrophage's rapid recogni-
tion of invading pathogens via pattern recognition recep-
tors (PRR) recognizing pathogen associated molecular
patterns (PAMPS) and subsequent phagocytosis, is vital to
maintaining healthy tissue [21]. Any impairment of these
cells by PB1-F2 would greatly facilitate the establishment
of a bacterial pulmonary infection. Also these resident
macrophages communicate with the adaptive arm of the
immune response via antigen presentation to CD4+ T
cells. This antigen presentation results in clonal expansion
of a given CD4+ T}, cell lineage and subsequently a range
of downstream effector functions are induced, such as
cytotoxic T lymphocyte (CTL) activation, antibody pro-
duction, and inflammation [22]. By PB1-F2 specifically
targeting macrophages for elimination, the induction of
the acquired immune response is delayed and debilitated.
This will allow for reduced clearance of Influenza A virus.
A prolonged presence in the host will increase damage to
host tissue and also produce more infectious virions that
will enable increased transmission. More importantly,
any delay or impairment in the immune response by PB1-
F2 mediated destruction of professional antigen present-
ing cells could facilitate an opportunistic bacterial infec-
tion.

The initial discovery of the PB1-F2 protein by Chen et al.
occurred via a broad search for antigenic Influenza A viral
peptides that are encoded by alternate reading frames.
Chen et al. also examined if these novel polypeptides are
presented by major histocompatibility complex I and in
turn recognized by CD8+ CTL on the surface of infected
cells. After scanning the Influenza A genome for this novel
antigenic, CTL-activating peptide, it was found to corre-
spond to a protein encoded by an alternate reading frame
found within the PB1 gene segment [2]. A simple sche-
matic representation of the PB1-F2 can be seen in Fig. 1
adapted from Lamb et al. 2001. It is believed this alternate
reading frame initiates at a start site (+) 120 base pairs
upstream from the PB1 gene reading frame and is
expressed possibly due to ribosomal scanning [23]. Ribos-
omal scanning is the process by which the 40S subunit of
the ribosome, after loading directly downstream of the 5'
cap by the translation machinery, "scans" for an AUG tri-
plet to initiate translation; however if the ribosome recog-
nizes an AUG in an alternate reading frame, a novel
polypeptide could be produced [24]. When analyzing the
PB1-F2 protein, it was found to be rather short lived in the
replication cycle, with its maximum expression occurring
approximately 5 hours post-infection [2]. The protein was
found to localize to the inner and outer membranes of
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mitochondria via a basic amphipathic helix in its C-termi-
nus [25]. When localized to the mitochondria, PB1-F2 can
induce a dramatic degradation of mitochondrial mor-
phology, which results in the reduction of the membrane
potential and the induction of apoptosis [26]. PB1-F2
possibly functions by creating nonspecific pores in lipid
bilayer membranes [27]. Interestingly this apoptotic
induction occurs in monocytes much more readily than in
epithelial cells, which was confirmed experimentally in
tissue culture. This apoptotic induction can occur both
when the protein is expressed intracellularly or simply
present extracellularly to the macrophages [23]. It has also
been shown that this PB1-F2 protein is not required for
replication due to the viability in tissue culture of knock-
out viruses lacking the PB1-F2 reading frame [1]; interest-
ingly the PB1-F2 knockout strain did show a marked
decrease, approximately 50%, in their ability to induce
monocyte apoptosis.

In sum, these in vitro findings strongly suggested that the
presence of the PB1-F2 protein would have an increasing
effect on viral pathogenicity in vivo. This hypothesis was
confirmed by a recent study conducted by Zamarin et al.,
which examined PB1-F2's contribution to Influenza A
virus pathogenesis in a mouse model. Indeed a virus
expressing the PB1-F2 was found to have an increased vir-
ulence when compared to a knockout virus lacking the
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The bisistronic PB| gene segment of Influenza A
Virus. Here we see the two open reading frames of the PBI
gene segment of Influenza A Virus. The red segment corre-
sponds to the alternate reading frame that encodes the PBI-
F2 protein whose start site is 120 bp downstream of the PBI
polymerase gene. This figure was adapted form Lamb et al.
2001 [23].
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alternate reading frame. Also the presence of higher viral
titers in the lungs of mice infected with a PB1-F2 express-
ing strain demonstrated a reduction in the animal's ability
to clear the virus as well as mount an effective immune
response [1]. Since PB1-F2 is found to have an apoptotic
effect on professional antigen presenting cells, the PB1-F2
mediated killing of these cells could impede antigen pres-
entation to the adaptive arm of the immune response,
thus allowing for the increased pathogenicity of the virus.

Interestingly this alternate reading frame is found in the
pandemic strains of 1968, 1957, and the infamous 1918
strain [1]. Indeed these viruses have a markedly patho-
genic phenotype evident by the staggering death rates
associated with each pandemic strain. All previous con-
clusions suggest that the increased pathogenicity of
viruses encoding this protein is solely due to the virus's
ability to reduce its own antigen presentation as well as
reduce viral clearance. However, it is known that the
major cause of death associated with an Influenza A virus
infection is the establishment of a secondary bacterial
infection [9]. Granted the cytotoxic, primary Influenza A
infection is vastly damaging and PB1-F2 contributes to
viral virulence by inducing apoptosis in macrophages.
This targeted elimination of macrophages increases viru-
lence by reducing antigen presentation and preventing
crosstalk between the innate and adaptive arms of the
immune system. However, the pathogenic enhancement
of the PB1-F2 expressing viruses may also be due to an
infected host's increased susceptibility to a secondary bac-
terial infection. This is an intriguing possibility and one
that has been overlooked by previous studies.

Conclusion

Currently it has been found after large-scale, exhaustive
sequence analysis of avian Influenza A virus isolates that
the PB1-F2 transcript is under the highest positive selec-
tive pressure for nonsynonymous substitutions [28]. This
combined with the emerging threat of a possible human
pandemic of Influenza A virus brings the enhancement of
pathogenicity by PB1-F2 to the forefront. The World
Health Organization's (WHO) policy now is to recom-
mend the stockpiling of antibiotics to combat secondary
bacterial infections associated with an outbreak of pan-
demic Influenza A virus [29]. If one could also develop an
antiviral antagonist of the PB1-F2 protein (especially due
to its ability to induce macrophage apoptosis when
present extracellularly) the targeted destruction of profes-
sional antigen presenting cells could be inhibited. There-
fore, the ability to clear virus and more importantly to
fend off opportunistic bacterial infections would be main-
tained. The inhibition of PB1-F2 could prove to have a
profound effect on human health because this could
reduce the high rates of mortality associated with pan-
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demic and epidemic Influenza A viruses carrying this
alternate reading frame.
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