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Abstract
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Background: Bacteriophages (phages) have been used extensively as analytical tools to type bacterial cultures and
recently for control of zoonotic foodborne pathogens in foods and in animal reservoirs.

Methods: We examined the host range, morphology, genome and proteome of the lytic £ coli O157 phage rV5,
derived from phage V5, which is a member of an Escherichia coli O157:H7 phage typing set.

Results: Phage rV5 is a member of the Myoviridae family possessing an icosahedral head of 91 nm between
opposite apices. The extended tail measures 121 x 17 nm and has a sheath of 44 x 20 nm and a 7 nm-wide core in
the contracted state. It possesses a 137,947 bp genome (43.6 mol%GC) which encodes 233 ORFs and six tRNAs.
Until recently this virus appeared to be phylogenetically isolated with almost 70% of its gene products ORFans. rV5
is closely related to coliphages Delta and vB-EcoM-FY3, and more distantly related to Salmonella phages PVP-SE1
and SSE-121, Cronobacter sakazakii phage vB_CsaM_GAP31, and coliphages phAPEC8 and phi92. A complete
shotgun proteomic analysis was carried out on rV5, extending what had been gleaned from the genomic analyses.
Host range studies revealed that rV5 is active against several other £. coli.
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Background

Since Escherichia coli O157:H7 is associated with
foodborne illness in humans with serious complications
such as hemorrhagic colitis and the hemolytic uremic
syndrome, much effort has been directed at understand-
ing the epidemiology and virulence of this zoonotic
bacterium [1,2], and minimizing its carriage by cattle
through phage biocontrol [3-5].

The scientific literature lists over fifty phages described as
being E.coli O157-specific. These include sixteen phages
(V1-V16) comprising part of a phage typing scheme for this
bacterium [6] plus phages 38, 39, 41, 42, ECB7 and ECA1
[7; AR1 [8,9]; Bo-21, Av-05, Av-06, and Av-08 [10];
CA933P, CA911 MFA933P and MFA45D [11]; CEVI1 and
CEV2 [12,13]; CSLO157 [14]; DC22 [15], e4/1c and el1/2
[16]; ECML-4, ECML-117, and ECML-134 [17]; JKO6;
KH1, KH4 and KH5 [18]; LG1 [19]; @V10 [20,21]; PPO1
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[22]; SFP10 [23]; SHI [24]; SP15, SP21, and SP22 [25];
vB EcoM CBA120 [5]; vB EcoS AKFV33 [4]; and,
vB _EcoS Roguel [26]. However, relatively little or
consistent information on morphology and taxonomic pos-
ition, host range, receptor specificity, genome size and
characterization is available for many of these viruses.

Only a limited number of these viruses have been fully
sequenced. They include members of the Myoviridae
(AR1, V7, wV8, CBA120, SFP10), Siphoviridae (JKO06;
Roguel; AKVFE33) and Podoviridae (¢pV10) viral families.
All are lytic phages except the latter virus which is tem-
perate. The myoviruses include representatives of three
viral genera: the “FelixOllikevirus” (wV8; [27,28]), the
“Viunalikeviruses” (CBA120 and SFP10; [29] and the
“T4likeviruses” (AR1 and V7 [30]) and the “TS5like
viruses” (AKVF33). The siphoviruses belong to the
“Tunalikevirus” genus (JK06, Roguel) or “T5likevirus”
(AKFV33), while the member of the Podoviridae is related
to Group El Salmonella enterica-specific bacteriophage
€l5 [31], making it a member of the “Epsilonl5likevirus”
genus [28].
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We describe here the host range, morphology, genome
and proteome of a phage designated rV5, considered a
derivative of the typing phage V5 of the original E. coli
O157:H7 phage typing set [6]. Phage rV5 was the
predominant phage recovered (hence “r’V5) from the
feces of calves experimentally infected with E. coli O157:
H7 and treated successfully with a cocktail of six of
these typing phages including V5 during a phage therapy
trial [32,33]. Although having the same host range as V5,
as shown below, rV5 was considered distinct from V5 as
rV5 may have acquired other attributes during passage
through the calves that would enhance its value as a
candidate therapeutic phage.

Results

Host-range of phage rV5

The phage was tested for lytic activity on reference
strains of 12 common phage types of E. coli O157:H7
and the ECOR collection [34]. The host range and activ-
ity of rV5 on these 12 is the same as previously found
for phage V5 (data not shown). Six (50%) of the 12
0157:H7 phage type reference strains were susceptible;
four being highly susceptible (>50% lysis) (Additional file 1:
Table S1). Seventeen (24%) of 72 strains of the ECOR
collection showed evidence of lysis, although only one
strain was highly susceptible (>50% lysis) (Additional file 2:
Table S2) Among these 17 strains, five had O antigens
shared by other diarrheagenic E. coli: O7, enteroaggregative
E. coli; O25 and 0173, enterotoxigenic E. coli O113,
enterohemorrhagic E. coli; and O167, enteroinvasive
E. coli [35].

Morphology of rV5

Phage rV5 has a contractile tail and is therefore a mem-
ber of the Myoviridae family. This virus has an icosahe-
dral head with a diameter of 91 nm between opposite
apices. The extended tail measures 121 x 17 nm and has
a sheath of 44 x 20 nm and a 7 nm-wide core in the
contracted state. Five to six thin tail fibers of 70 nm in
length are occasionally seen (data not shown).

Properties of the phage genome

The sequence of the rV5 phage genome was deter-
mined through sequencing of two random clone li-
braries and by primer walking using the phage DNA
as a template. All 846 sequence reactions at approxi-
mately 600 bp per reaction resulted in 3.6 fold
coverage of the genome. The final sequence of the
circularly permuted genome (137,947 bp, 43.6 mol%
GC) is very similar to the size estimated by PFGE
(132.5 kb; Figure 1). An analysis of the variation in
base composition over the entire length of the genome
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Figure 1 PFGE analysis of rV5 DNA. PFGE was performed on
rV5 genomic DNA with and without digestion with Xbal. Lane 1,
NEB Low Range PFGE Marker; lane 2, V5 genomic DNA, Lane 3, V5
genomic DNA digested with Xbal.
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revealed very little evidence of horizontally acquired
genes [36].

tRNAs

Like many of the larger members of the Myoviridae,
rV5 codes for tRNAs. Five (Argaga, Tyrrac, Thraca,
Metarg, Procca) were identified using the tRNAScan
program [37] and an additional one (Sertga) was
detected using ARAGORN [38]. In E. coli O157:H7
strains AGA is used as the Arg codon 5.1% of the time,
followed by threonyl codon ACA (14.6%), prolyl codon
CCA (19.1%), tyrosyl codon TAC (42.7%), and methionyl
codon ATG (100%). By comparison, rV5 uses these same
codons 26, 35, 29, 46 and 100% of the time. It would
appear that the presence of the tRNA,,, and the
tRNAp,, homologs would increase the rate of transla-
tion of phage mRNAs. Methionyl tRNA, while seem-
ingly unwarranted, occurs in many members of the
Myoviridae including Aeromonas phage Aehl (2 cop-
ies, NC_005260), mycobacteriophages Bxzl (2 copies,
NC_004687), vibriophage KVP40 (NC_005083), Lis-
teria phage P100 (NC_007610), and Symechococcus
phage S-PM2 (3 copies, NC_006820). This suggests
that the presence of additional tRNAy may facilitate
the rapid translation of phage mRNAs.

Identification of ORFs

The ORFs for rV5 were identified using the Kodon
software package from Applied Maths (Austin, TX). In
almost every case upstream there was a sequence show-
ing considerable similarity to the consensus ribosome-
binding site (5GGAGGT3'). A total of 233 ORFs were
discovered most closely packed or overlapping. The total
codon capacity of the genome was 91.6% (average
0.54 kb per ORF) (Figure 2). The rV5 genome contained
88 mainly small ORFs between 92269-121323 and no
observable ORFs from regions 104013-106618. Prior to
our description of Salmonella phage PVP-SE1 [39], only
73 (31%) of gene products of rV5 possessed homologs to
proteins in the nonredundant databases; and, only 44
(19%) were homologous to phage proteins. The rV5
proteome was scanned with TMHMM [40], and Phobius
[41] programs, revealing that 15 proteins possessed trans-
membrane domains (Additional file 3: Table S3).

Transcription

From the gene layout in Figure 2, we propose that
rV5 contains four transcriptional units comprising
genes 10-1-238-164, 11-26, 27-81, and 82-163, re-
spectively. Based upon the gene arrangement, we
would minimally expect bidirectional transcriptional
terminators between genes 26 and 27 and genes 163 and
164, and bidirectional promoters between genes 10 and 11
and 81 and 82, respectively. Of these sites, only the

Page 3 of 12

bidirectional terminators were located between genes 26
and 27. In addition, bidirectional promoters were discov-
ered between genes 10 and 11. In total, using stringent
selection processes, 33 promoters and 20 rho-independent
terminators where discovered in the rV5 genome
(Additional file 4: Table S4). All had extensive homology
to the consensus E. coli promoters, with 11 possessing ex-
tended —10 regions [34,35]. Since these promoters are
distributed across the rV5 genome, it suggests that
modification of the host holo-RNA polymerase, as
observed with coliphage T4 to permit recognition of
different promoter classes [42], might not occur in
rV5. To investigate this further, we selected the up-
stream sequence for late genes (27-66) and resub-
mitted it to MEME [43]. Eight copies of a motif
(TggTAaAAtA) which is similar to the T4 late pro-
moter consensus sequence (TATAAATA) [44,45], were
identified (Additional file 4: Table S4). Late transcription in
T4-like phages is dependent upon three gene products,
namely gp45 (RNA polymerase recruitment), gp33
(co-activator of late transcription) and gp55 (late promoter
recognition protein). There are no homologs for these pro-
teins in rV5.

PSI-BLAST analysis of gpl1 revealed that it is probably a
Srd homolog. These proteins are postulated to act as
antisigma factors functioning as decoys for RpoD and RpoS.
It is homologous to similar proteins in coliphages T4
(NP_049634), Acinetobacter phage 133 (YP_004300600)
and Pseudomonas phage ¢Pto-bp6g (AEO14611). Perhaps
this is used as a part of a molecular switch between
early and late transcription.

Nucleotide metabolism and DNA replication
Phage rV5 contains numerous genes involved in nucleo-
tide metabolism and DNA replication. Among the
former we found genes coding for exo- (gp94) and
endodeoxyribonucleases (gp213), the anaerobic and aer-
obic ribonucleotide reductase subunits (gp109-112 and
117), and thymidylate synthase (gp106). This group of
enzymes is also commonly found in many other mem-
bers of the Myoviridae and is collectively responsible for
generating deoxyribonucleotides for phage DNA syn-
thesis. The ribonucleoside-diphosphate reductases are
responsible for the interconversion of ribo- to deoxyri-
bonucleotides and are usually represented by three main
classes: class I complex of NrdAB or NrdEF which re-
quires oxygen for activity; class II containing Nrd]
and the oxygen-sensitive; class III encoded by NrdDG
[46]. As with coliphages RB43, RB49 and RB69, phage
rV5 contains homologs of the hosts NrdAB and
NrdDG proteins.

Among the enzymes directly involved in DNA replica-
tion are a DNA ligase (gp88), DNA polymerase (gp228),
and two possible helicases (gp230, gp237). gp88 contains
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Figure 2 Genetic map of phage rV5 with each line representing 21 kb of the sequence. Genes in colour represent those whose products
exhibit homologs in the NCBI nonredundant databases, while those illustrated in black lack homologs. Green, brown and grey colored genes
specify proteins involved in morphogenesis, DNA metabolism and lysis, respectively. The grey box labeled “non-coding” contained no ORFs.
Promoters are illustrated as pink arrowheads, while rho-independent terminators are displayed as stem-loop structure, also in pink.

a PRK09125 DNA ligase domain and its closest homolog
in ATP-dependent DNA ligase of Enterobacteria phage
vB_EcoM-FV3 (AEZ65217), Salmonella phage 7-11
(YP_004782418) [47] and Pseudomonas phage P3_CHA
(ADX32167) [48]. The 775 amino acid rV5 DNA poly-
merase (gp228), possesses a smart00482 (POLAc) DNA
polymerase A and, a DNA_pol_A_pol_I_B (cd08643)
domain. Its closest homologs are in Enterobacteria
phage vB_EcoM-FV3 (AEZ65345), Cronobacter phage
CR3 (AFH21225) [49] and Vibrio phage ICP1_2001_A
(ADX89239) — all members of the Myoviridae. Gp230
contains C-terminal GP4d_helicase (cd01122) and DnaB
(COG0305) domains. Again its homologs are to proteins
in vB_EcoM-FV3 (AEZ65346), CR3 (AFH21242) as well
as to primase/helicases in members of the Podoviridae.
The product of gene 237 has PIF1 (pfam05970), PIF1-
like helicase and RecD (COGO0507), ATP-dependent
exoDNAse (exonuclease V), alpha subunit domains, and
again shows homology to proteins in phages vB_EcoM-
FV3 and CR3.

In an effort to define the origin of replication of this
phage, Grigoriev AT- and GC-skew analysis was under-
taken [50-53]. The rV5 genome revealed changes at
nucleotides 6425, 13675-13725, 66675-66725 and
104425-105475, all of which appear to be associated
with a change in the orientation of transcription.

Proteomics and morphogenesis

The proteomics of rV5 were investigated in three ways.
(1) The proteins were screened for homologs to struc-
tural proteins in other phages using the BLASTP pro-
gram, (2) the virions were studied by one-dimensional
SDS-PAGE (data not shown) and (3) the total phage
proteome was investigated by mass spectrometry
(Additional file 5: Table S5). SDS-PAGE revealed at least
10 bands, the five major ones having relative molecular
weights of 288.2, 174.0, 52.3, 26.1 and 9.7 kDa. Among
the proteins detected by total phage proteomics were
the putative tail proteins (gp37, 42 and 49), tail fibre
proteins (gp30, 32, 33, 41 and 43), tail baseplate (gp36
and 45), and a major capsid protein (gp60).

The five proteins that deserve further attention are gp30,
33, 37, 41 and 43 since they appear to specify tail fiber-like
proteins which play crucial roles in phage adsorption to its
host. These proteins were analyzed using HHpred [54].
Gp30, a 347 amino acid protein, contained a domain with
significant similarity (Probab=98.39 E-value=9e-08) to
the short tail fibers of coliphage T4 (Gp12) which are

involved in LPS-binding (PDB accession number 1PDI;
[55]). Interestingly, the similarly sized Gp33 also shows
significant homology (Probab=97.69 E-value=7.5e-06)
to this same protein. These two proteins show 42.3%
sequence identity using the ALIGN Query program
[56] which suggests that two chemotypes of LPS may
be recognized.

With 1279 amino acid residues, gp37 is one of the lar-
gest proteins specified by this virus. Its domains include
COG4733 [phage-related protein, tail component]. The
phage homologs include Shewanella prophage MUSO?2,
43 kDa tail protein 3CDD (Probab=97.13 E-value=0.011)
and a Neisseria 43 kDa prophage tail protein (Probab=97.05
E-value=0.0095). Gp41, a 1272 AA protein, possesses a
C-terminal domain (3GW6, Probab=98.69 E-value=1.5e-
08) to an endo-N-acetylneuraminidase from Enterobacteria
phage K1F, a podovirus. This region shows a high probabil-
ity of a coiled-coil structure as demonstrated using
PCOILS [57,58]. The N-terminus of gp43 (222 AA) shows
structural similarity to the N-terminus of phage P22
tailspike protein (2VNL; Probab=96.34 E-value=0.00042).

Using Using mass spectrometry of trypsin-digested vi-
rions the following proteins were identified: gp52 (tail
tube protein; 16.1% coverage), gp53 (tail sheath protein;
31.9%), gp60 (major capsid protein; 83.3%), gp61 (head
decoration protein; 85.3%), gp64 (portal protein; 36.3%)
all of which are expected to be major components of the
viral particles. In addition, gp133 (15.9%) was one of the
predominant proteins (Additional file 5: Table S5). A
comparison of phage rV5 and phi92 [59] permitted us to
definitively identify the tail tube and sheath proteins.

Introns in terminase

BLASTX analysis revealed that the gene specifying the
large subunit of the terminase complex was divided into
three segments, one of which contained a homing endo-
nuclease. While introns are not uncommon in myoviral
genomes, being present in coliphage T4 [42], Aeromonas
phage 25 (NC_008208), Pseudomonas phage ¢EL, and
Synechococcus phage S-PM2, in only one other virus,
siphovirus LL-H of Lactobacillus delbrueckii subsp.
Lactis, does the TerL gene contain an intron [60].

Lysis

Lysis of infected bacteria is brought about through the se-
quential effects of a pore-producing protein — the holin —
and a peptidoglycan-degrading enzyme — the lysin. Holins
usually contain 2—3 membrane spanning helices (TMD), a
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charged C-terminus and exhibit poor sequence identity
to other functionally related proteins [61-63]. In many
phages, a lysis cassette exists in the genome with the
holin gene preceding that of the lysin. In rV5, Gp89
codes for an obvious lysin (pfam00959, Phage_lysozyme
& COG467, Muramidase) possessing strong sequence
identity to the lysozymes of enterobacterial phages
phage vB_EcoM-FV3, and Salmonella phage Vi II
variant E1 [64]. Since no homolog to a holin was dis-
covered, the rV5 proteome was scanned with
TMHMM [40] and Phobius [41]. In only one case,
gp129, did the two programs indicate that the protein
contained two TMDs. This 78 amino-acid residue
protein also possessed a high concentration of lysyl-
and arginyl-residues in its C-terminus suggesting that this
putative holin is separated from to the lysin gene as in
phage T4.

Discussion

Host range studies

Phage rV5 was subject to extensive host range studies,
revealing virulence for numerous E. coli other than sero-
type O157:H7. The six E. coli O157:H7 phage type refer-
ence strains susceptible to rV5 together represent 73%
of all isolates of E. coli O157:H7 phage typed at the Na-
tional Microbiology Laboratory in Canada in 2007-2010
[65] [The National Microbiology Laboratory (NML) and
Centre for Food-borne Environmental and Zoonotic
Infectious Diseases (CFEZID) PHAC, Provincial Public
Health Microbiology Laboratories. 2010 Annual Sum-
mary of Laboratory Surveillance Data. Forthcoming].
Also, among the susceptible E. coli strains of the ECOR
collection were several that share the same O antigens
as other diarrheagenic E. coli. Since O antigens are
recognized as attachment sites for phages of Gram-
negative bacteria, rV5 potentially may be activity against
diarrheagenic E. coli other than E. coli O157:H7. Virulence
for such a broad range of pathogens potentially is of value
for candidate therapeutic phages, as has been noted
previously [66].

Evolutionary considerations

The phylogenic origin of specific phages is always com-
plicated by recombinational exchanges that have pre-
sumably occurred during the speciation of the virus.
When this study was initiated in 2004, phage rV5 was a
genomic orphan since the majority (ca. 70%) of its genes
were ORFans [67,68]. Since then five other phages have
been reported to be rV5-like: coliphages vB_EcoM-FV3
[69], phAPEC8 [70] and phi92 [59], Cronobacter sakazakii
phage vB_CsaM_GAP31 [71] and Salmonella phage
PVP-SE1 [39]. To this list we can also add Salmonella
phage SSE-121 (JX181824); and, coliphage Delta Y that
Andrey Letarov and Alla Golomidova (Winogradsky
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Institute of Microbiology, RAS, Moscow, Russia), isolated
from horse manure, and partially sequenced. This once
again illustrates that very similar phages may be isolated
from widely different locales [72-74].

Based upon the proposed assignment to a genus
being the presence of 40% conserved proteins [28,75],
the five fully sequenced phages could be grouped in the
“V5likevirus” genus. The submitting author is now of the
opinion that the use of the 40% protein homologs as an
indication of membership in the same genus is too inclu-
sive, resulting in, at least for the phages with large
proteomes, “taxonomic lumping.” At the protein level, rV5
and FV3 share 90.6% homologous proteins; while rV5 and
PVP-SEL, only share 42.9% of the proteomic content. At
the DNA level, rV5 and coliphage vB_EcoM-FV3 share
87.3% DNA sequence identity, while rV5 and Salmonella
phage PVP-SE1 share <50% sequence identity. Based upon
BLASTN analysis the mycobacteriophages have been
grouped and subgrouped (http://phagesdb.org/; [76]). Using
the same approach, complemented by progressiveMauve
analyses (Figure 3) [77] we visualize the existence of
three related genera - the “V5likevirus” (rV5, FV3), the
“Pvplikevirus” (PVP-SE1, GAP31 and SSE-121) and the
Phi92likevirus (phi92 and phAPECS). The results of the
progressiveMauve alignment also indicate a serious prob-
lem with the genomics of phages with circularly permuted
genomes, that the genomes are not collinear. This is most
apparent with the “Pvplikevirus” all of which start in radic-
ally different positions, which require realignment before
running EMBOSS stretcher. The separation of the rV5-
related phages into three groups is also indicated by a
phylogenetic analysis of their capsid proteins and DNA
polymerases which clearly indicate three clades (Figure 4).

Materials and methods

Bacteriophages and hosts

Phage V5 was obtained from Rafiq Ahmed (National
Microbiology Laboratory, Winnipeg, MN, Canada) and is
part of a collection of E.coli O157:H7 typing phages [6].
Phage rV5 was isolated during a successful “proof of con-
cept” study of phage therapy for E. coli O157:H7 infection
of cattle; it was the predominant phage in the feces of
calves that eliminated E. coli O157:H7 following oral ad-
ministration of a mixture of V5 and five other lytic 0157
phages [32,33]. Determination of the host range of rV5 and
V5 propagated and quantitated on E. coli O157:H7 strain
R508 for 12 E. coli O157:H7 phage type reference strains
revealed they shared the same host range, consistent with
the designation of rV5 as a derivative of V5.

Host range study

The virulence of phage rV5 for reference strains of 12
common phage types of E. coli O157:H7 and 72 strains
of the ECOR collection [34] was determined by spotting
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Figure 3 ProgressiveMauve alignment of seven phage genomes which are related to coliphage rV5. The blocks of similar colour for each
phage indicate regions of DNA sequence relatedness; while white regions indicate dissimilar sequence. Below these are illustrated the phage
genes as black outlined boxes on the plus (above horizontal) and minus (below horizontal) strands. Please note that the genomes of rV5 and FV3;
and, phAPEC8 and phi92 are collinear with each other; and that the initial brown segment in rV5 is found in the same position in FV3, GAP32

and PVP-SE1 (but in this case of the complementary strand); at ca. 65kb in the sequence of SSE-121; and is entirely missing is phi92 and
phAPECS. The fact that many of these genomes are not collinear renders direct comparisons difficult.

10° PFU of phage rV5 onto freshly seeded lawns of
bacteria on agar plates [6].

Electron microscopy

Phage rV5 was sedimented for 60 min at 25,000 g in a
Beckman J2-21 ultracentrifuge (Palo Alto, CA) using a
JA-18.1 fixed angle rotor, and washed twice in buffer
(0.1 M neutral ammonium acetate). The sediment was
deposited on carbon-coated copper grids, stained with
2% potassium phosphotungstate (pH 7.0) and 2% uranyl

acetate (pH 4.0), and then examined in a Philips EM 300
electron microscope operated at 60 kV. Magnification
was monitored using T4 phage tails (113 nm in length)
[78]. Particles were measured on prints at a final magni-
fication of 297,000 times.

Propagation of phages and their purification

The phages were propagated at a multiplicity of infec-
tion (MOI) of 10 on E. coli O157:H7 strain R508 in
2.0 L of TSB containing 10 mM MgSO, for 18 h at 37°C
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Figure 4 Phylogenetic analysis of rV5-related phage capsids protein (A) and DNA polymerases (B) using “one click at phylogeny.fr.
Homologous proteins from Cronobacter phage C3 (NC_017974), Vibrio phage ICP1 (NC_015157) and Pseudomonas phage vB_PaeM_C2-10_Ab1
(HE983845) were used as outliers.

J

with shaking at 120 rpm. The resulting lysates were
clarified by centrifugation at 6,000 x ¢ and pancreatic
DNase 1 and RNase A (Sigma Aldrich, St. Louis, MO)
were added to the filtrate to concentrations of 10 pg/ml.
The phages were precipitated with polyethylene glycol
8000 [79], and subsequently purified by cesium chloride
step and equilibrium density gradient ultracentrifugation
as described by Sambrook and Russell [80]. The final
band was dialyzed at 4°C against two changes of 2 L of
dialysis buffer (10 mM Tris HCl, 10 mM MgSO,.7H,0,
25mM NaCl, pH 7.5, 0.01% gelatin). The concentration
of purified phages in the dialyzed suspension was deter-
mined by direct plaque assay with E. coli O157:H7 strain
EC990298 as the host.

Pulsed field gel electrophoresis (PFGE)

The genome size of rV5 was characterized by PFGE [81]
and data were analyzed using the BioNumerics program
(Applied Maths, Austin, TX).

Purification of phage DNA

DNA for construction of a clone library was extracted
from phage rV5 prepared as above to the stage of pre-
cipitation with PEG 8000 and sedimentation by ultracen-
trifugation. The pellet was resuspended in a minimal
volume of lambda diluent. EDTA was then added to a

concentration of 20 mM, and the phage DNA was
extracted by sequential treatment with proteinase K
(50 mg/ml), SDS (0.5%, w/v), phenol-chloroform extrac-
tion and ethanol precipitation [80]. The precipitated
DNA was dissolved in water, tested for purity by electro-
phoresis in 0.9% agarose and by PCR for contaminating
bacterial DNA using the malM gene of E. coli O157:H7
as a target. The concentration of DNA in the final prep-
aration was calculated from its absorbance at 260 nm.

Genome sequencing

The sequence of rV5 was derived initially from a clone
library and subsequently by primer walking at The
Centre for Applied Genomics (Toronto, ON, Canada).
Primers were designed using Premier Biosofts NetPrimer
(http://www.premierbiosoft.com/netprimer/), and purchased
from Sigma Genosys Canada (Oakville, ON). The sequences
were assembled using the SeqMan program (DNASTAR,
Madison, WI).

Genome annotation

Open reading frames (ORFs) were identified using
Kodon (Applied Maths). The protein products of each
ORF were examined for homologs using the programs
PSI-BLASTP [82,83] or Batch-BLAST (http://greengene.
uml.edu/programs/NCBI_Blasthtml. In certain cases the
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proteins were also subjected to HHpred [54,84] analysis
at http://toolkit.tuebingen.mpg.de/hhrep. In addition,
each protein was scanned for conserved protein motifs
using Batch Web CD-Search Tool [85,86], TMHMM
[41] and Phobius [41]. Transfer RNAs were detected
using tRNAscan [37] and ARAGORN [38]. Codon usage
information on E.coli O157:H7 strains was determined
using data from the Forsyth Institute’s Microbial
Genome Codon Usage Database (http://exon.gatech.edu/
metagenome/CodonUsageDatabase/). The codon usage
of rV5 was analyzed using DNAMAN software (Lynnon
Corp., Vaudreuil-Dorion, QC, Canada). Potential termi-
nators were located by ARNold [87] and verified using
the MFOLD algorithm [88]. Putative promoters were
identified in the sequence upstream (5) of the genes
by homology to the consensus sigma-70 promoters of
E. coli (TTGACA (N15-20) TATAAT) using the “search
sequences” feature of DNAMAN. As a further aid to iden-
tifying interesting regulatory sequences 100 bp of 5" upstream
sequence data was extracted using extractUpStreamDNA at
http://ifz.corefacility.ca/extractUpStreamDNA/ extractUpSt-
reamDNA/ and submitted to MEME [89] at http://meme.
sdsc.edu/.

For comparative genomic analyses we employed EM-
BOSS Stretcher at http://emboss.bioinformatics.nl/cgi-bin/
emboss/stretcher, while CoreGenes 2.0 [90,91] was used to
compare proteomes. Phylogenetic analyses were carried out
using “one click” at http://www.phylogeny.fr/ [92].

Genome accession numbers

The annotated genomic sequence of phage rV5 is avail-
able from the NCBI under the accession number
DQ832317.

Proteomics (sample preparation and MudPIT analysis)

After unsuccessful attempts to disrupt phage rV5 by os-
motic shock with sodium chloride, it was treated with
LiCl (2). Six ml of 10 M LiCl were added to 6 ml of puri-
fied dialysed phage rV5 containing 1.2 x 10'* PFU. The
mixture was incubated for 20 min at 46°C and then di-
luted 10-fold with dialysis buffer (10 mM Tris—HCI,
10 mM MgSO,, 25 mM NaCl, pH 7.5) at 4°C. After con-
centration to the starting volume (6 ml) by centrifuga-
tion in a 10,000 molecular weight cut-off (MWCO)
device (Amicon Centriprep YM10, Millipore Corpor-
ation, Bedford MA, USA), the concentrate was dialyzed
against 4 L of dialysis buffer for 24 h in a 10,000 MWCO
cassette (Pierce, Rockford, IL, USA). After dialysis, the
sample was processed three times on an immobilized
DNase 1 F7, matrix column (MoBiTec, Géttingen,
Germany) with elution by gravity. The eluate was dialyzed
as before, against two 4 L volumes of the same dialysis
buffer to remove the cleaved DNA fragments and then
concentrated to 0.5 ml by centrifugation in a 10,000

Page 9 of 12

MWCO device (Centriprep YM10) and stored at -20°C.
The protein concentration was estimated from its absorb-
ance at 280 nm at 1.59 mg/ml.

Protein samples were suspended in 8 M urea and
100 mM Tris pH 8.5, reduced with 100 mM TCEP for
30 min followed by cysteine alkylation with 55 mM
iodoacetamide for another 30 min in the dark. The
mixture was then diluted to 4 M urea by adding
100 mM Tris buffer pH 8.5 (and CaCl, was added to en-
sure tryptic specificity at 2 mM). Trypsin was then used
to digest the protein samples at 37°C for 24 hrs (1:100
enzyme:sample). The digestion was stopped with the
addition of formic acid to 4% (v/v) prior to column
loading.

The protein digest was pressure-loaded onto a column
containing 4 cm of 5 pm C18 resin packed into 250 um
inner diameter fused silica capillary with a M-520
0.5 pm filter assembly (IDEX Health & Science LLC,
Oak Harbor, WA), followed by desalting with 0.1% formic
acid in 5% acetonitrile. The loaded C18 column was then
connected to 100 um (i.d.) analytical column consisting of
4 cm of packed 5 pm strong cation exchange resin (SCX
Partisphere, Whatman GE Healthcare) and 10 cm of
packed C18 resin (Polymicro Technologies, Phoenix, AZ)
with a 5 pm laser pulled tip. The column assembly was
placed inline and LC/LC-MS/MS was carried out as de-
scribed earlier [93], using a 12-step separation with an
Agilent HP1100 system connected to a LCQ Deca ion trap
mass spectrometer (Thermo Scientific).

Tandem mass spectra were collected in a data-
dependent pattern by collecting one full MS scan (m/z
range = 400-1400) followed by MS/MS spectra of the
three most abundant precursor ions. The MS/MS spec-
tra were then processed and searched against the protein
database (NCBI) using the SEQUEST algorithm (http://
fields.scripps.edu/sequest/). All subsequent filtering and
comparisons of identifications were made using DTASelect
and Contrast software [94].

Additional files

Additional file 1: Table S1. Sensitivity of reference strains of 12
common phage types of E. coli O157:H7 to lysis by phage rV5.

Additional file 2: Table S2. Sensitivity of ECOR strains to lysis by phage rV5.

Additional file 3: Table S3. 1V5 genes, their products, homologs and
potential function.

Additional file 4: Table S4. Predicted promoters and rho-independent
terminators found in the V5 genome.

Additional file 5: Table S5. MS data on rV5.
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MS: Tandem mass spectrometry; MudPIT: Multi-dimensional protein
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carboxyethyl)phosphine); TMHMM: TransMembrane prediction using Hidden
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