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response genes
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Abstract

Background: Animal-borne orthopoxviruses, like monkeypox, vaccinia and the closely related cowpox virus, are all
capable of causing zoonotic infections in humans, representing a potential threat to human health. The disease
caused by each virus differs in terms of symptoms and severity, but little is yet know about the reasons for these
varying phenotypes. They may be explained by the unique repertoire of immune and host cell modulating factors
encoded by each virus. In this study, we analysed the specific modulation of the host cell's gene expression profile
by cowpox, monkeypox and vaccinia virus infection. We aimed to identify mechanisms that are either common to
orthopoxvirus infection or specific to certain orthopoxvirus species, allowing a more detailed description of
differences in virus-host cell interactions between individual orthopoxviruses. To this end, we analysed changes in
host cell gene expression of Hela cells in response to infection with cowpox, monkeypox and vaccinia virus, using
whole-genome gene expression microarrays, and compared these to each other and to non-infected cells.

Results: Despite a dominating non-responsiveness of cellular transcription towards orthopoxvirus infection, we
could identify several clusters of infection-modulated genes. These clusters are either commonly regulated by
orthopoxvirus infection or are uniquely regulated by infection with a specific orthopoxvirus, with major differences
being observed in immune response genes. Most noticeable was an induction of genes involved in leukocyte
migration and activation in cowpox and monkeypox virus-infected cells, which was not observed following vaccinia
virus infection.

Conclusion: Despite their close genetic relationship, the expression profiles induced by infection with different
orthopoxviruses vary significantly. It may be speculated that these differences at the cellular level contribute to the
individual characteristics of cowpox, monkeypox and vaccinia virus infections in certain host species.
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Background

Viruses of the family Poxviridae are characterized by
their large and complex virions, a double-stranded DNA
genome of 130-375 kbp and the cytosol as the place of
replication [1]. As a family, poxviruses are able to infect
both vertebrate and invertebrate hosts. Poxviruses of
vertebrates are divided into ten genera [2]. Out of these,
especially the genus orthopoxvirus (OPV) contains sev-
eral important pathogens of humans and animals, including
some zoonotic members [3]. After eradication of variola
virus (VARV) [4], the most common OPYV infections are
caused today by monkeypox virus (MPXV), vaccinia virus
(VACV) and cowpox virus (CPXV) [3]. VACV is the
prototype member of the OPV genus and the best-studied
one. VACV served as vaccine during the smallpox eradica-
tion campaign and its virulence in man is generally low.
However, several severe complications have been reported
to occur after vaccination or laboratory-acquired expos-
ition [5,6]. Furthermore, researchers in Brazil have been
reporting several cases of naturally occurring zoonotic
VACV infections since 1999 [7-10]. Similar to VACV
infections, human CPXV infections of healthy individuals
are generally self-limiting and cause only localised skin
lesions. However, severe generalised CPXV infections with
lethal outcome have been reported in immunocomprom-
ised patients [11,12]. In Europe and parts of northern and
central Asia, endemic CPXV are the most common cause
of human OPV infections [13]. It is assumed that wild
rodents serve as reservoir hosts for CPXV. However,
transmission to various other species including several do-
mestic and zoo animals has been reported, and of all OPV
CPXV is suggested to possibly infect the widest range of
host species [3]. To date, no direct human-to-human
transmission has been reported [13,14]. In contrast to
VACV and CPXV, MPXV causes a disease resembling
smallpox in humans, but with milder morbidity and lower
mortality rates [15]. The severity of the disease depends
on the geographic origin of the different MPXV strains, as
virus isolates from Central Africa have been shown to be
more virulent than those from Western Africa [16,17].
MPXV was first described as an illness of captive zoo
monkeys [18], and rodents are assumed to be the natural
host [3].

Concerning the potential threat arising from VACYV,
MPXYV and CPXYV, a deepening of our knowledge about
the mechanisms underlying differences in poxviral
pathogenesis and species-specificity would allow greatly
improved risk assessment.

Today, more than 100 OPV genomes have been fully
sequenced. Therefore the unique arsenal of viral genes
encoded by each virus is often known, and in several
cases detailed information about viral gene functions is
also available. However, current knowledge about
corresponding events in the host cell and especially of
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the differences in host response towards infection and
host modulation by these viruses is still limited. Several
studies described the transcriptional host response to-
wards infection of different cell types with VACV or
closely related rabbitpox virus, either using microarrays
or ultrahigh-throughput DNA sequencing for genome-
wide transcriptome analysis [19-25]. These studies re-
port that host genes are predominantly downregulated
during infection, which may be due to an unspecific sup-
pression of host mRNAs by VACV. The fewer cellular
genes which are specifically induced by infection are
supposed to play key roles in viral replication or host re-
sponse to infection, respectively [19,22,25]. Especially
mRNAs which are associated with the NF-«kB cascade,
apoptosis, signal transduction and ligand-mediated sig-
nalling were reported to be induced in response to
VACYV infection [21]. Similarly, MPXV was described to
cause a decrease in host mRNA levels, accompanied by
an increase of fewer mRNAs following infection of MK2
cells [26]. Besides these studies, which focused on ana-
lysis of the host response to infection by one specific
virus, Rubins et al. directly compared how VACV and
MPXYV alter the gene expression programs in their hosts
[27]. However, to our knowledge, so far no study has
investigated the transcriptional response of the host cell to-
wards CPXV infection. As CPXV encodes several unique
genes, not to be found in the VACV or MPXV genome, we
decided to compare the way how these zoonotic poxviruses
alter the gene expression of their host cells. We chose HeLa
cells as a model system and characterized changes in the
host transcriptional programs in response to infection with
CPXV, MPXV or VACYV, respectively, using microarrays
representing the whole human genome. We aimed to iden-
tify mechanisms that are either common to OPV infection
or to specific OPV species at the cellular level, allowing a
more detailed description of differences in virus-host cell
interactions between individual OPV.

Results

Experimental design

HeLa cells were infected with either CPXV reference
strain Brighton Red (BR), the highly pathogenic central
African MPXYV strain MSF-6 [28] or the mouse-pathogenic
VACYV strain IHD-W [29]. HeLa cells were chosen because
of their high susceptibility towards OPV infection and be-
cause many fundamental studies on OPV biology and on
host gene expression changes following infection have been
performed with this cell line [19-21,23,25]. Cells were
infected at a high multiplicity of infection of 5 plaque
forming units (PFU) per cell to guarantee synchronous in-
fection of all cells. Total RNA from infected and mock-
infected control cells was isolated at 6 h post infection. This
point of time was chosen to allow enough time for estab-
lishment of infection and progression to late viral gene
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expression but to avoid the risk of cell lysis and RNA deg-
radation after completion of the first replication cycle
[1,24,30]. Furthermore, previous studies described that spe-
cific gene activation in response to infection mainly occurs
until 6 h post infection, while unspecific downregulation of
genes prevails at later stages of infection [19,23]. Therefore,
we chose 6 h post infection to analyse the specific host cell
modulation by CPXV, MPXV and VACV and to analyse
differences in the cellular response towards these viruses.
The successful infection of HeLa cells with all viruses and
the uniform progression of infection were confirmed by
immunofluorescence microscopy of cells infected in paral-
lel. At 24 h post infection with each virus nearly all cells
were infected and showed a pronounced cytopathic effect
(data not shown). To verify that all viruses had uniformly
proceeded from intermediate to late viral transcription at
6 h post infection, mRNA expression of the late transcrip-
tion factor VLTF-1 (VACCP-GS8R) and of the late 11 kDa
virion core protein (VACCP-F17R) was confirmed via
quantitative real-time PCR (data not shown).

Total RNA from infected and mock-infected control
cells was used for cRNA microarray analysis of host cell
transcription. All experiments were performed in dupli-
cate using RNA samples from two independently infected
cell cultures for each analysis. To compare the gene ex-
pression profiles, ratios were calculated by dividing the
merged normalised signal intensities of infected samples
by mock-control signal intensities. Genes that exhibited a

Page 3 of 13

fold change (FC) in gene expression >2 and signal inten-
sities that were significantly above the background with
p-values <0.01 were chosen for further analysis (see also
Additional file 1).

The majority of host genes remains unaffected after
infection

At first, we compared the gene expression data of each
virus-infected sample to the expression profile of the
mock-infected HeLa cells to determine the relative
modulation of cellular transcription induced by infection
with CPXV, MPXV or VACYV, respectively. As shown in
Figure 1A, a majority of 96% of the assayed cellular
transcripts remained unchanged after infection with ei-
ther virus strain. Out of the 30,484 individual genes and
transcripts assayed in total (using 41,000 probes), 1,027
(3.7%) transcripts in CPXV-infected cells, only 321
(1.1%) transcripts in MPXV-infected cells and 1,002
(3.3%) transcripts in VACV-infected cells showed ex-
pression changes larger than 2-fold after infection.
Among the 1,027 CPXV-modulated transcripts, 660
(64.3%) were upregulated and only 367 downregulated.
A similar distribution can be seen following MPXV in-
fection which resulted in upregulation of 219 (68.2%)
and downregulation of 102 transcripts. Likewise, VACV
infection resulted in upregulation of 708 (70.7%) and
downregulation of 294 transcripts. Taken together, these
data show that an infection with CPXV, VACV and
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Figure 1 Number of host mRNAs regulated by CPXV, MPXV or VACV infection. Shown are the numbers of cellular transcripts that exhibited
expression changes larger than 2-fold after infection with each virus in two independent microarray experiments. Transcripts that were
upregulated after infection in comparison to non-infected cells are shown in dark grey, transcripts that were downregulated in white (A).
Intersections of transcript downregulation (B) or upregulation (C) in response to VACV, CPXV or MPXV infection are shown in the Venn diagram.
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especially MPXV induces only marginal changes of the
cellular gene expression profile at 6 h post infection.

Identification of gene expression changes common to
CPXV, MPXV and VACV infection

Despite of the fact that the number of host cell transcripts
affected by CPXV and VACV infection was similar, the
number of genes regulated by CPXV and VACV was only
330 (~33%) of approximately 1,000. Among the 321 host
transcripts which are modulated by MPXV infection, 241
(75.1%) were also affected by CPXV but only 148 (46.1%)
by VACV infection. Beyond that, by comparing all three
data sets, we could identify a cluster of 133 transcripts
whose expression is modulated after infection with each
virus. Out of these, 96 transcripts (72.2%) were upregulated
in all virus-infected samples and 37 were downregulated
(Figure 1B, C). We applied a Gene Ontology (GO) term-
based cluster analysis of these 133 transcripts to iden-
tify the biological processes in which the genes are
involved. Analysis of gene set enrichment was used to iden-
tify statistically overrepresented processes. This analysis
revealed that the most prominent group were genes
involved in chromatin organisation, containing 50 of the
133 transcripts. Out of these, 46 belonged to the histone
family of proteins. Increased detection of histone mRNAs
following OPV infection has been described before to be an
experimental artefact caused by de novo polyadenylation of
these mRNAs by the viral poly(A) polymerase, resulting in
their enhanced amplification and detection [22,27]. There-
fore histone mRNAs were excluded from further analysis,
resulting in 87 genes which were regulated by infection
with CPXV, MPXV as well as VACV. A comparison of the
gene expression of these genes is shown in Additional
file 2. Besides the histone family members, further func-
tional clusters of transcripts were identified.

Analysis of commonly regulated genes reveals an
induction of epidermal growth factor family members
and genes involved in regulation of MAPK activity by
CPXV, MPXV and VACV

Cluster analysis of the 87 non-histone transcripts that
were affected by all OPV tested revealed a statistically sig-
nificant (Bonferroni-corrected group p-value =1.1 x 107°)
overrepresentation of genes involved in inactivation of
mitogen-activated protein kinase (MAPK) activity (DUSP5/
6, SPRED1/2, SPRY2/4). All of these genes were upregulated
in virus-infected cells and all of them are known to
be induced following MAPK-ERK activation [31-35]. In
this context, we could also observe a strong upregulation
of the early growth-response gene EGR1 and a less
pronounced upregulation of EGR2 by all three viruses.
EGR1 upregulation via the MAPK-ERK pathway following

Page 4 of 13

VACV and CPXV infection has been described before by
Silva et al. [36]. Here we show a similar effect following
MPXYV infection as well. To further evaluate the general
impact of OPV infection on biological processes of the
infected cell, we examined potential enrichment of these 87
commonly affected genes in known canonical pathways,
according to the KEGG pathway database. We could iden-
tify 12/87 genes which significantly mapped to two distinct
pathways, the ErbB pathway with 5.75% of associated genes
(AREG, CBLB, EREG, HBEGF, PRKCB; p = 1.6 x 10°) and
the JAK-STAT pathway with 4.52% of associated genes
(CBLB, IL4R, LIF, SPRED1/2, SPRY2/4; p =2.1 x 10™). The
ErbB signalling pathway comprises a family of receptor
tyrosine kinases which are coupling the binding of extra-
cellular growth factor ligands to intracellular signalling
pathways such as the MAPK pathway. In this context,
upregulation of the epidermal growth factor (EGF) family
members EREG, AREG and HBEGF, respectively, may be
seen as a trigger for enhanced MAPK-ERK signalling
which itself results in upregulation of DUSP5/6, SPRED1/2,
SPRY2/4 and EGR1/2, respectively, as a feedback mechan-
ism. The induction of EGF family members and genes
involved in regulation of MAPK activity by VACYV,
CPXV as well as MPXV is summarized in Table 1.
Interestingly, only the immune-regulatory CBLB gene
and the multifunctional PRKCB gene were downregulated
by infection.

Identification of virus-specific changes in gene expression
induced by CPXV, MPXV or VACV infection
In contrast to these few commonly regulated genes, most
infection-regulated genes differ from virus to virus. These
differences were most prominent when comparing CPXV
or MPXV to VACYV infection. To this end, we attributed
the enrichment of all genes to biological processes that
were differentially regulated following infection in com-
parison to non-infected cells. This analysis again shows
the common regulation of the MAP kinase pathway by all
three viruses, but also highlights major differences in the
gene clusters affected by CPXV, MPXV or VACV infec-
tion. All results are summarized in Table 2. In the case of
CPXV infection we could identify 16 overrepresented
clusters, including several genes encoding protein kinases,
proteins mediating kinase activity and blood vessel devel-
opment. However, this cluster also contained a significant
overrepresentation of genes which can be involved in im-
mune response-activating signal transduction such as
Toll-like receptor signalling pathways. Notably, other sig-
nificantly overrepresented groups were associated with
immune system processes, too, such as regulation of
leukocyte migration and myeloid cell differentiation.

In the case of MPXV infection again an enrichment
of genes involved in negative regulation of MAPK



Bourquain et al. Virology Journal 2013, 10:61
http://www.virologyj.com/content/10/1/61

Table 1 Induction of EGF family members and genes
involved in regulation of MAPK activity by CPXV, MPXV
and VACV

Gene Gene expression changes (average FC)®
CPXV MPXV VACV
MAPK activity DUSP5 6.6 49 36
DUSP6 8.1 95 52
EGR1 14.3 308 98.6
EGR2 26 5.1 42
IL4R 6.2 58 29
LIF 9.7 12.6 4.6
SPRY1 127 ns® ns®
SPRY2 7.7 7.1 70
SPRY4 208 30.1 11.8
SPRED1 28/3.7° 2.9/3.0° 22/22°
SPRED2 20 23 28/7.8°
both CBLB =27 -34 =25
ErbB pathway  AREG 10.2 83 4.8
EREG 44/6.7¢ 7.0/10.3¢ 29/3.0°
HBEGF 4.0/54° 23/2.6° 2.1/2.8°
PRKCB -49 -34 -24

? Cluster and pathway analysis of the 87 non-histone transcripts that were
affected by all OPV tested revealed a statistically significant overrepresentation of
genes involved in inactivation of mitogen-activated protein kinase (MAPK)
activity and growth factor signalling. Shown are gene expression changes
of the identified genes at 6 h post infection in CPXV-, VACV- or MPXV-
infected cells in comparison to mock-infected cells as average fold change
(FC) values.

P Values that did not meet the analysis cut-off of an average FC >2.0 and

p <0.05 are designated n.s. (not significant).

€ Two values separated by a slash designate values obtained from two different
probes on the microarray.

activity and negative regulation of intracellular protein
kinase cascade was observed. Similar to CPXV infection,
immunity-associated clusters were likewise overrepresented.
This included the biological processes “cellular response to
lipopolysaccharide” and “positive regulation of NF-«B tran-
scription factor activity”. Many of the regulated genes
within either of these processes are also involved in positive
regulation of leukocyte migration, Toll-like receptor signal-
ling and chemotaxis.

In contrast, host genes modulated by VACV infection
showed a significant overrepresentation only in four
Gene Ontology (GO) terms. The most significantly
affected biological process was negative regulation of
intracellular protein kinase cascade and especially of the
MAPK cascade. However, in comparison to CPXV and
MPXYV infection, no immune response-specific processes
could be identified. Taken together, we could identify
considerable differences concerning the expression of
immunity-associated host genes which were significantly
affected by CPXV and MPXV but not by VACV infection.

Page 5 of 13

Analysis of canonical pathways reveals a significant
influence of CPXV and MPXV but not VACV infection on
cellular pathways involved in the immune response and
infectious diseases

Infection with CPXV influenced the expression of 1,027
genes, 244 of which were represented in the KEGG path-
way database, and 126 of these genes could be mapped to
21 significantly affected pathways (Figure 2). In the
case of MPXYV infection 104 genes were found in KEGG,
and 35 of them could be mapped to pathways that met
the criteria. Both after CPXV and MPXV infection a no-
ticeable overrepresentation of immunity-related pathways
was observed, along with a significant overrepresentation
of genes mapping to pathways specific for certain infec-
tious diseases. Interestingly, for the most part the disease-
specific pathways which were affected by CPXV and
MPXYV infection describe infections caused by intracellular
pathogens or inflammatory processes. For VACV-infected
cells 191 out of 949 genes were found in KEGG. However,
in sharp contrast to the numerous cellular pathways
affected by CPXV or MPXV infection, only the ErbB
signalling pathway was significantly affected by VACV
infection. All significantly affected pathways are shown in
Figure 2.

Taken together, this shows the general importance of
growth factor and MAPK signalling for OPV infection. Fur-
thermore, the analysis highlighted that immune response-
associated signalling pathways are highly affected by CPXV
and MPXYV, but not by VACV infection. Several genes
which are affected by CPXV and MPXV infection
were involved in disease-specific pathways. However,
the majority of those genes also mapped to other, less
pathogen-specific pathways like Toll-like and NOD-like
receptor signalling pathways, phagosome, MAPK sig-
nalling and apoptosis pathways, albeit with a less sig-
nificant enrichment.

CPXV and MPXV modulate genes involved in leukocyte
migration and TLR signalling

We analysed enrichment of genes involved in immune
system processes to further specify these results. To
this end, we matched these genes against the GO im-
mune system process database. We could identify an
overrepresentation of genes involved in positive regula-
tion of leukocyte migration (p=1.2x 107, 21.8%) and
Toll-like receptor 2 signalling pathways (p =4.9 x 1072,
18.1%) after CPXV infection, and in positive regula-
tion of leukocyte migration (p=6x107, 12.7%) and
TRIF-dependent Toll-like receptor signalling pathways
(p=59x107, 11.3%) after MPXV infection. No such
overrepresentation could be detected among genes
that showed regulation following VACV infection
(data not shown).
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Table 2 Cluster analysis of infection-induced gene expression changes

Leading term?®

No. of genes® Group p-value Term p-value®

CPXV blood vessel development
negative regulation of protein kinase activity

myeloid cell differentiation

negative regulation of protein serine/threonine kinase activity

ERK1 and ERK2 cascade
regulation of ERK1 and ERK2 cascade
regulation of actin cytoskeleton organization
negative regulation of MAP kinase activity (gene set 1)
negative regulation of MAP kinase activity (gene set 2)
regulation of leukocyte migration
negative regulation of hormone secretion
negative regulation of Wnt receptor signalling pathway
nephron development
positive regulation of nitric oxide biosynthetic process
positive regulation of transmission of nerve impulse
positive regulation of mitosis
negative regulation of insulin receptor signalling pathway
MPXV positive regulation of NF-kB transcription factor activity
negative regulation of intracellular protein kinase cascade
negative regulation of hormone secretion
negative regulation of MAP kinase activity
cellular response to lipopolysaccharide
positive regulation of Rho GTPase activity
astrocyte differentiation
regulation of gliogenesis
VACV negative regulation of MAPK cascade
ovum-producing ovary development
potassium ion transmembrane transport

cellular potassium ion transport

49 48x10™" 76%107
25 14%10™ 1.1x10°8
22 65%x10™ 54%10°
2 80x 1078 11x107°
20 17%x10™" 38x%10°
19 18%107 13%x10°
18 1.1%x10% 45%107°
17 44%10° 10x 108
17 14x 10" 1.0x10°8
14 62x10° 55x% 107
13 46x10° 1.0x10°
1 42%x10° 1.1x10"
11 24%10° 38x% 107
10 50%10° 25%10°
9 7.7 %10 39x%10°
7 22x10° 18% 107
6 na’ 13% 107
12 18%107° 53% 108
11 na‘ 26x10°
10 na’ 33x%10°
8 na’ 18%10°
8 93x%10° 81x10”
7 na’ 2.7 %10
6 nac 20x10™
6 na‘ 13%x107°
12 70x10° 25%x10™
8 na’ 48x%107
6 nat 41%10?
6 nac 41%107

@ Overrepresented biological processes identified by GO clustering of the genes affected by CPXV, MPXV or VACV infection. Related terms were merged into
functional groups to reduce redundancy, and the most significant term of the group was defined as group-leading term.

® The degree of connectivity between terms is calculated using K statistics, and the calculated k score is also used for defining functional groups. Shown are the
identified overrepresented processes, the number of infection-regulated genes assigned to that process and the term p-values.

€ n.a. = not applicable. Only term p-values are given if no grouping was done.

CPXV and MPXYV strongly induce genes involved in
chemotaxis or leukocyte activation

A comparison of the changes in the host gene expres-
sion of immune response-affiliated genes, as defined by
respective GO terms, showed several genes which were
highly upregulated after CPXV or MPXYV but not or only
slightly upregulated after VACV infection. Especially
following CPXV infection an upregulation of several in-
flammatory genes was observed. Furthermore, several
genes encoding proteins which possess chemokine activity
or are involved in positive regulation of leukocyte migra-
tion were induced by CPXV infection. This upregulation
was similar for MPXV infection, but not or only weakly

present following VACV infection. Additionally, we could
observe a pronounced upregulation of several genes
involved in leukocyte activation and positive regulation of
leukocyte activation following CPXV infection, which
could not be observed following VACV infection and
only to a lesser extent following MPXYV infection (Figure 3).
The numbers of up- and downregulated genes which are
associated with these GO terms are also shown in Table 3.
Taken together, these data indicate that in contrast to
VACV infection the regulation of immune response-
associated genes by CPXV and MPXYV infection may more
likely indicate a pronounced antiviral immune response of
the host cell than a process beneficial for viral replication.
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Figure 2 CPXV- and MPXV- but not VACV-modulated cellular pathways are involved in infectious diseases. Cellular pathways that were
significantly affected by infection with CPXV, MPXV or VACV, respectively, as indicated by * (p < 0.05) or ** (p < 0.01). Along with pathways which
describe general processes of the cell, we identified several immune system-specific pathways (A) and several pathways which are specific to
certain diseases (B). P-values indicate the probability of random association between the genes in the data set and the canonical pathway.
Abbreviations used in the figure: C-CR interaction = cytokine—cytokine receptor interaction; Transcr. misreg. in cancer = transcriptional
misregulation in cancer.
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Figure 3 Modulation of immune response-associated genes by
CPXV, MPXV or VACV infection. An overview of the changes in
host gene expression patterns of immune response-associated
genes induced by all three different OPV. Folds of change in gene
expression in comparison to mock-infected cells are represented as
gradient red and green colour representing low and high relative
expression in the respective microarray (shown are 2 arrays per
virus). Numbers indicate the log10 of the change fold values. GO
term assignment of the respective genes is displayed by different
colours. Red = “leukocyte activation”, green = “regulation of leukocyte
activation”, blue = “leukocyte migration”, magenta = “regulation of
leukocyte migration”, yellow = "human chemokine activity”,
turquoise = “inflammatory response”. Only those genes are shown
which had at least a 2-fold change in expression relative to the
mock-infected control and for which the direction of regulation
detected by both arrays was the same. Additionally, regulation in
each selected gene differs by a factor of at least 2 between at least
two of the samples.

This is supported by the observed upregulation of many
pro-inflammatory genes and especially chemokine genes
following CPXV and MPXYV infection.

Discussion

In this study we applied a comparative analysis of changes
of the host cell gene expression profile following infection
with CPXV, MPXV or VACV, respectively. We addressed
the question whether the different characteristics of each
virus, especially the distinctive repertoire of host modulat-
ing factors encoded by each virus, may in part be reflected
by different characteristics of the infected cells. OPV are
well known to suppress the antiviral host defence, exploit
the host cell machinery for reproduction and to inhibit or
delay cell death. However, most of our knowledge about
these mechanisms originates from studies using VACV.
More recently, after the US outbreak in 2003, MPXV has
come into focus [37,38], but again, our knowledge about
the differences in virus—host interactions between VACV
and MPXV and even more so between VACV, MPXV and
CPXYV is still limited. In this study we investigated the host-
cell transcriptome of CPXV-, MPXV- or VACV-infected
cells to explore the different capabilities of each virus to
interact with the host cell.

We found the host cell transcriptome to be mainly un-
affected by poxviral infection, despite the major morpho-
logical changes induced by infection. Although this
holds true for OPV infection in general, the impact of
MPXV infection on the transcriptome seems to be
uniquely low. This might indicate an even more elaborate
“stealth” program than that performed by VACV or CPXV,
allowing MPXV to especially well avoid the responses of
the innate and adaptive immune systems to the developing
infection. It would be interesting to investigate if this is true
for MPXYV infection in general, or if it might be a character-
istic of the highly pathogenic central African MPXV strains
in contrast to less pathogenic west African strains [17].
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Table 3 Numbers of at least 2-fold up- or downregulated immune response-associated genes following CPXV, MPXV or

VACV infection grouped by associated GO term

Leukocyte Regulation of leukocyte Leukocyte Regulation of leukocyte Human chemokine Inflammatory
activation activation migration migration activity response

Up Down Up Down Up Down Up Down Up Down Up Down
CPXV 17 6 15 6 12 4 8 4 6 0 29 2
MPXV 16 6 16 2 13 6 9 3 7 0 31 3
VACV 9 5 11 4 6 5 4 4 5 0 20 4

The data presented are in agreement with the results
by Rubins et al. which show no general decline in cellu-
lar mRNAs after infection of HeLa cells with MPXV
(Zaire strain) or VACV (Western Reserve strain) [27]. In
our study we could prove that the same was true for
CPXV infection. Other studies describe that the cellular
gene expression is generally suppressed in response to
infection and that only few genes are specifically induced
[19,23,26]. In our study, we found that more than two
thirds of the few host cell transcripts which exhibited
regulation in response to infection were upregulated at
6 h post infection. However, we cannot exclude the pos-
sibility of a more pronounced downnregulation of host
cell genes at later stages of infection. Furthermore, in
our study, only genes were taken into account that
exhibited at least 2-fold change in gene expression, to
set the focus on genes that exhibit stronger regulation.
Therefore, a mild global downregulation of cellular genes
which was below the cut-off value might have been
neglected (see also Additional file 3). However, while re-
pression of host genes by OPV is thought to be generalised
and likely nonspecific, cellular genes which are induced by
infection are of particular interest, as they are thought to
play key roles in viral replication or host response to infec-
tion [19,22,25].

We found the infection-induced changes of the gene
expression profiles of CPXV-, MPXV- and VACV-
infected cells to be largely different. However, we could
still identify several cellular transcripts which showed simi-
lar modulation after infection with each virus, the most sig-
nificant one being histone mRNAs. An apparent induction
of histone genes has been described previously in other
studies [19-21,26,27]. However, this is thought to be an ex-
perimental artefact caused by de novo polyadenylation of
the histone transcripts by the viral poly(A) polymerase, as
histone mRNAs are the only mRNAs in eukaryotes that
lack a poly(A) tail in general [22,27]. This is supported by
the fact that Yang et al. reported histone mRNAs to be
overrepresented at 4 h post VACV infection even after poly
(A)-specific mRNA isolation procedures [21]. If this was
the case, amplification of histone mRNAs from infected
samples would be greatly enhanced by the poly(A)-
dependent procedure we used. We therefore decided to ex-
clude histone mRNAs from further analysis.

After exclusion of histone mRNAs, we could identify
87 cellular transcripts which seemed to be commonly
modulated by OPV infection in general. Most notice-
able was an apparent infection-induced upregulation
of genes involved in inactivation of MAPK activity.
The upregulated Sprouty (SPRY2/4) and Sprouty-related
(SPRED1/2) proteins are known to be induced by growth
factor receptor activation-mediated MAPK-ERK activation
via Ras as a self-regulatory feedback inhibition mechanism
[31-33]. Similarly, the upregulated DUSP5/6 and EGR1/2
genes are commonly induced as early response genes after
activation of the MAPK-ERK signalling pathway and
act as negative regulators of ERK phosphorylation [34,35].
Therefore we suggest that the observed upregulation of
genes involved in inactivation of MAPK activity may reflect
a feedback mechanism towards virus-induced stimula-
tion of MAPK-ERK activity, probably via an enhanced
virus-induced signalling through EGF receptors. This the-
ory is supported by the observed overrepresentation of
components of the ErbB pathway among the commonly
affected transcripts and by the upregulation of EGF family
members following infection. Although modulation of the
MAPK-ERK pathway seems to be a common effect of OPV
infection, its importance differs from virus to virus. Silva
et al. showed that inhibition of MEK/ERK signalling
resulted in a significant decrease in VACYV yield, but had no
impact on CPXV replication [36,39,40]. The importance of
MAPK-ERK signalling in the context of MPXV replication
has not been addressed yet.

Despite these few commonly affected gene sets, major
differences in the transcriptional response towards infection
with CPXV, MPXV or VACYV prevailed. Most interesting
was an enrichment of genes involved in immunity-
associated processes and pathways in CPXV- and MPXV-
infected cells, which was strikingly absent following VACV
infection. This included especially genes that are involved
in leukocyte migration and Toll-like receptor signalling,
which seemed to be affected by CPXV as well as by MPXV
infection.

Interestingly, we could identify several pathways specific
to certain infectious diseases to be affected by CPXV and
MPXYV infection. As most of these pathways were specific
to infection by intracellular pathogens, this result may be
explained by universal mechanisms of host modulation and
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inflammatory host response which could be affected alike
by these diseases and by CPXV and MPXV.

A large proportion of the immunity-associated genes
which were affected by CPXV and MPXV consisted of
pro-inflammatory cytokine genes and genes involved in
leukocyte chemotaxis or activation of immune cells. As
most of these genes showed pronounced upregulation
after CPXV and MPXV infection, this might reflect an
inadequate subversion of the hosts’ antiviral response.
This may be supported by the fact that an induction of
genes implicated in the immune response, e.g. IL6, could
also be observed in response to attenuated modified
VACV Ankara infection of HeLa cells [19] but not in re-
sponse to non-attenuated VACV WR infection [23]. Inter-
estingly, an induction of pro-inflammatory cytokines and
chemokines in response to CPXV and MPXV infection was
observed by other studies as well. Increased IL8 gene ex-
pression following MPXV infection of MK2 cells was
reported by Alkhalil et al. [26]. And in vivo, strong secretion
of IL-6, IL-8, and G-CSF or of IL-6, IL-8 and CCL-2, re-
spectively, was observed following infection of cynomolgus
macaques (Macaca fascicularis) with MPXV or CPXYV, re-
spectively [41-43].

Conclusion

To our knowledge, this study represents the first de-
scription of changes of the host cell gene expression pro-
gram in response to infection with CPXYV, a virus that is
circulating in Europe as well as in parts of Asia and that
displays some individual features in the genus OPV.
While the host cell response towards VACV infection
has been analysed in great detail by previous studies, we
describe one of the first attempts to directly compare
the impact of CPXV, MPXV and VACV on the gene ex-
pression profile of the host cell. We could show a major
non-responsiveness of the transcriptional program of the
host cell towards infection with all three viruses, which
may be a sign of successful virostealth. In spite of this,
we could also identify several genes which seemed to be
affected by OPV infection in general or exhibited regula-
tion by infection with a specific virus. By assigning these
genes to certain biological processes or pathways, we
could show that CPXV and MPXV infection induces
several genes which are involved in immunity. This may
indicate that CPXV and MPXV infection, but not VACV
infection, induce a pronounced inflammatory response
which may result in attraction of leukocytes. This leads
to the question whether the induction of those genes is
a part of the antiviral activity of the host or a process in
benefit of infection as a mechanism that facilitates viral
spread. The latter may be suggested by the important
role which infected leukocytes are known to play in
OPV dissemination across the body [27,44]. It will be
interesting to analyse the effect of different viral strains
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or cell types on the observed effects, especially concerning
the large genetic diversity of different CPXV strains or of
VACYV strains from different geographical origin.

Methods

Cells and culture conditions

All cell lines were obtained from American Type Culture
Collection (ATCC, Manassas, VA). HeLa cells (ATCC ID
CCL-2) were cultivated in Eagle’s minimal essential
medium (EMEM) supplemented with 10% heat-inactivated
foetal calf serum (FCS, PAA) and 2 mM of L-glutamine
(PAA). Hep-2 cells (ATCC ID CCL-23) and Vero E6 cells
(ATCC ID CRL-1586) were both cultured in Dulbecco’s
Modified Eagle Medium (DMEM) containing 10% FCS and
2 mM of L-glutamine. All cell lines were routinely screened
for the absence of mycoplasma contamination.

Viruses and infection conditions

VACV strain IHD-W (ATCC ID VR-1441, NCBI GenBank
KC201194) and CPXV strain Brighton Red (ATCC ID
VR-302; NCBI GenBank AF482758) were obtained from
ATCC (ATCC, Manassas, VA). MPXV strain MSF-6 (se-
quence to be submitted soon), which was obtained from a
fatally infected human in Congo, was kindly provided by
Prof. Dr. Hermann Meyer (Institut fiir Mikrobiologie der
Bundeswehr, Miinchen, Germany) [28]. All viruses were
propagated in Hep-2 cells and cell culture supernatants
which were clarified by centrifugation were used as virus
stocks. The titres of virus stocks were determined by
plaque assay [45] in Vero E6 cells as described before
[46] and were shown to be comparable for CPXV, VACV
and MPXV. All virus stocks were screened for absence of
mycoplasma contamination. For infection experiments,
HeLa cells were grown in 25 cm® cell culture flasks
(Nunc) and incubated overnight before infection with
each virus at a multiplicity of infection of 5 PFU/cell.
Mock infections were performed using culture medium
free of any virus. After adsorption of virus for 1 h at 37°C,
the virus-containing medium or mock medium was
removed and cells were washed twice with phosphate
buffered saline (PBS) to reduce side effects caused by bio-
logical factors probably present in the inoculum. After-
wards, fresh culture medium was added. Cells were then
incubated at 37°C until 6 h post infection. All infection
experiments were performed in biosafety level 3 (S3) la-
boratories in accordance with the German legal regulations.

Sample acquisition and RNA preparation for microarray
analysis

Total RNA was isolated using Trizol® Reagent (Invitrogen)
as described in the manufacturer’s protocol for adherent
cells. RNA samples from two independently infected cell
cultures were used for each analysis. Human total RNA
quality and integrity were determined using the Agilent
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RNA 6000 Nano Kit on the Agilent 2100 Bioanalyzer
(Agilent Technologies). RNA was quantified by measuring
A260 nm on the ND-1000 Spectrophotometer (NanoDrop
Technologies). Sample labelling was performed as detailed
in the Agilent “One-Color Microarray-Based Gene Expres-
sion Analysis” protocol (version 5.7, part number G4140-
90040). Briefly, 1 pg of each total RNA sample was used for
the amplification and labelling step, using the Agilent
Quick Amp Labeling Kit (Agilent Technologies) in the
presence of cyanine 3-CTP. Yields of cRNA and the dye-
incorporation rate were measured with the ND-1000 Spec-
trophotometer (NanoDrop Technologies).

Microarrays and hybridisation

The hybridisation procedure was performed according
to the “One-Color Microarray-Based Gene Expression
Analysis” protocol (Agilent Technologies, version 5.7,
part number G4140-90040). Briefly, 1.65 pg of Cy3-labeled
fragmented cRNA in hybridisation buffer was hybridised
overnight (17 h, 65°C) to Agilent Whole Human Genome
Oligo Microarrays 4 x 44 K, using Agilent’s recommended
hybridisation chamber and oven. Following hybridisation,
the microarrays were washed once with the Agilent Gene
Expression Wash Buffer 1 for 1 min at room temperature,
followed by a second wash with preheated Agilent Gene
Expression Wash Buffer 2 (37°C) for 1 min. The last
washing step was performed with acetonitrile.

Scanning and data analysis

Fluorescence signals of the hybridised Agilent Microarrays
were detected using Agilent’s Microarray Scanner System
(Agilent Technologies). The Agilent Feature Extraction
Software (FES) 10.5.1.1 was used to read out and process
the microarray image files. For determination of differential
gene expression, FES-derived output data files were further
analysed using the Rosetta Resolver gene expression data
analysis system (Rosetta Biosoftware, Rosetta error model
[47]). Ratios were calculated by dividing sample signal in-
tensity through control signal intensity. The signal inten-
sities from the single-experiment raw data lists were
normalised by dividing the intensity values by their median.
Putative candidate genes were selected based on a mini-
mum fold change (FC) >2 and p-value <0.01. The calcula-
tion of merged ratios for replicate experiments was
performed by calculating pair-wise log-ratios and log-ratio
error and the subsequent combination to one ratio in an
error-weighted averaging procedure. Data visualisation was
done via generation of heat maps from the normalised sig-
nal intensity data using the software environment R
(v2.15.0).

Pathway analysis
Analysis of enrichment of genes to certain canonical
pathways was done using the software Cytoscape 2.8.2 in
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combination with the Cytoscape plugin ClueGO v1.4
[48,49]. Enrichment analysis was based on terms provided
by the KEGG databases (received 7% February 2012) [50].
The probability of random association between the
genes in the data set and the canonical pathway was
calculated with a right-sided minimum likelihood test on
the hypergeometric distribution using the Bonferroni cor-
rection of p-values. Pathways that were identified with stat-
istical support of p-values <0.05 were taken into account.
Due to the multitude of pathways which were identified by
this method when analysing all differentially regulated
genes, we decided to focus on significantly overrepresented
terms. These were characterized by p-values <0.05, a ratio
of 210% of term-annotated genes and a minimum of at
least 4 genes per term.

Cluster analysis

Analysis of enrichment of genes to certain GO terms
was also done using ClueGO. Enrichment analysis was
based on terms provided by the GO (database file
received 6™ February 2012) [51]. Again, we decided to
focus on significantly overrepresented terms which were
characterized by p-values <0.01, a ratio of 210% of term-
annotated genes and a minimum of at least 6 genes per
term. Furthermore, related terms were merged into func-
tional groups and the most significant term of the group
was defined as group leading term. The degree of connect-
ivity between terms is calculated using « statistics and the
calculated k score is also used for defining functional
groups [48].

Microarray data

Microarray data have been submitted to the Gene Expres-
sion Omnibus (GEO) and can be searched using the record
ID: GSE36854.

Additional files

Additional file 1: Overview of changes in transcript expression
following infection. Scatter plot of signal intensities of all spots. Data
was obtained by merging the data sets of two replicates. The plots
illustrate a comparison of signal intensities from non-infected cells versus
CPXV- (A), MPXV- (B) or VACV- (C) infected cells. The signal intensities of
each feature represented by a dot are shown in double logarithmic scale.
X-axis: mock signal intensity; y-axis: infected sample signal intensity. Red
diagonal lines define areas of 2-fold differential signal intensities. Blue
spots define unchanged expression; red dots: transcripts significantly
upregulated and green dots: transcripts significantly down-regulated in
the infected samples (p-value <0.01). The grey cross in the legend marks
the number of significantly up- and downregulated genes.

Additional file 2: Results of Cluster Analysis: genes regulated by
CPXV, MPXV and VACV. Shown is the relative expression of genes
which were regulated by infection with all OPV tested to a similar extent.
Included are genes that exhibited more than 2-fold up- or
downregulation following infection. Red and green colour displays up- or
downregulation in the infected cells compared to non-infected cells
(shown are 2 arrays per virus). Numbers indicate the log10 of the change
fold values.
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Additional file 3: Distribution of up- or downregulated genes. The
figure shows the distribution of up- or downregulated transcripts
following infection with CPXV (A), MPXV (B) or VACV (C) in comparison
to non-infected cells. The degree of regulation compared to the non-
infected control is displayed on the x-axis. A global minor
downregulation below the set cut-off value of 22 fold change occurred
following infection with MPXV and VACV.
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