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Adaptive evolution of bat dipeptidyl peptidase 4
(dpp4): implications for the origin and emergence
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Abstract

Background: The newly emerged Middle East respiratory syndrome coronavirus (MERS-CoV) that first appeared in
Saudi Arabia during the summer of 2012 has to date (20th September 2013) caused 58 human deaths. MERS-CoV
utilizes the dipeptidyl peptidase 4 (DPP4) host cell receptor, and analysis of the long-term interaction between virus
and receptor provides key information on the evolutionary events that lead to the viral emergence.

Findings: We show that bat DPP4 genes have been subject to significant adaptive evolution, suggestive of a
long-term arms-race between bats and MERS related CoVs. In particular, we identify three positively selected
residues in DPP4 that directly interact with the viral surface glycoprotein.

Conclusions: Our study suggests that the evolutionary lineage leading to MERS-CoV may have circulated in
bats for a substantial time period.
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Main text
Middle East respiratory syndrome coronavirus (MERS-
CoV) [1], first described by the World Health Organization
(WHO) on 23rd September 2012 [2,3], has to date (20th
September 2013) caused 130 laboratory-confirmed hu-
man infections with 58 deaths (http://www.who.int/csr/
don/2013_09_20/en/index.html). MERS-CoV belongs to
lineage C of the genus Betacoronavirus in the family
Coronaviridae, and is closely related to Tylonycteris bat
coronavirus HKU4 (BtCoV-HKU4), Pipistrellus bat cor-
onavirus HKU5 (Bt-HKU5) [4,5] and CoVs in Nycteris
bats [6], suggestive of a bat-origin [6]. Unlike severe
acute respiratory syndrome (SARS) CoV which uses the
angiotensin-converting enzyme 2 (ACE2) receptor for cell
entry [7], MERS-CoV employs the dipeptidyl peptidase 4
receptor (DPP4; also known as CD26), and recent work
has demonstrated that expression of both human and bat
DPP4 in non-susceptible cells enabled viral entry [8].
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Cell-surface receptors such as DPP4 play a key role in
facilitating viral invasion and tropism. As a consequence,
the long-term co-evolutionary dynamics between hosts
and viruses often leave evolutionary footprints in both
receptor-encoding genes of hosts and the receptor-binding
domains (RBDs) of viruses in the form of positively selected
amino acid residues (i.e. adaptive evolution). For example,
signatures of recurrent positive selection have been ob-
served in ACE2 genes in bats [9], supporting the past
circulation of SARS related CoVs in bats. To better under-
stand the origins of MERS-CoV, as well as their potentially
long-term (compared to short-term which lacks virus-host
interaction) evolutionary dynamics with bat hosts [5,10],
we studied the molecular evolution of DPP4 across the
mammalian phylogeny.
We first analyzed the selection pressures acting on bat

DPP4 genes using the ratio of nonsynonymous (dN) to
synonymous (dS) nucleotide substitutions per site (ratio
dN/dS), with dN > dS indicative of adaptive evolution. The
complete DPP4 mRNA sequence of the common pipistrelle
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Table 1 Sequences used in the evolutionary analysis of DDP4

Common name Species name Family Accession no.

Sheep Ovis aries Bovidae XM_004004660

Killer whale Orcinus orca Delphinidae XM_004283621

Cow Bos taurus Bovidae NM_174039

Pig Sus scrofa Suidae NM_214257

Pacific walrus Odobenus rosmarus divergens Odobenidae XM_004410199

Ferret Mustela putorius furo Mustelidae DQ266376

Cat Felis catus Felidae NM_001009838

Horse Equus caballus Equidae XM_001493999

Rhinoceros Ceratotherium simum Rhinocerotidae XM_004428264

Large flying fox Pteropus vampyrus Pteropodidae ENSPVAG00000002634

Black flying fox Pteropus alecto Pteropodidae KB031068

Common vampire bat Desmodus rotundus Phyllostomidae GABZ01004546

Brandt’s bat Myotis brandtii Vespertilionidae KE161360

David’s myotis Myotis davidii Vespertilionidae KB109552

Little brown bat Myotis lucifugus Vespertilionidae GL429772

Common pipistrelle Pipistrellus pipistrellus Vespertilionidae KC249974

Guinea pig Cavia porcellus Caviidae XM_003478564

Degu Octodon degus Octodontidae XM_004629976

Lesser Egyptian jerboa Jaculus jaculus Dipodidae XM_004651712

Mouse Mus musculus Muridae BC022183

Rat Rattus norvegicus Muridae NM_012789

Human Homo sapiens Hominidae NM_001935

Chimpanzee Pan troglodytes Hominidae GABE01002695

Pygmy chimpanzee Pan paniscus Hominidae XM_003820939

Gorilla Gorilla gorilla gorilla Hominidae XM_004032706

Orangutan Pongo abelii Hominidae NM_001132869

Gibbon Nomascus leucogenys Hylobatidae XM_003266171

Olive baboon Papio anubis Cercopithecidae XM_003907539

Rhesus monkey Macaca mulatta Cercopithecidae JU474559

Galago Otolemur garnettii Galagidae XM_003795172

Marmoset Callithrix jacchus Cebidae XM_002749392

American pika Ochotona princeps Ochotonidae XM_004577330
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(Pipistrellus pipistrellus) was downloaded from GenBank
(www.ncbi.nlm.nih.gov/genbank/) along with that of the
common vampire bat (Desmodus rotundus) from one
transcriptome database (http://www.ncbi.nlm.nih.gov/
bioproject/178123). These sequences were then used to
mine and extract DPP4 mRNA transcripts from a fur-
ther five bat genomes (Table 1) using tBLASTn and
GeneWise [11]. The complete DPP4 genes of bats and
non-bat reference genomes from a range of mammalian
species (Table 1) were aligned using MUSCLE [12]
guided by translated amino acid sequences (n = 32; 727
amino acids). We then compared a series of models within
a maximum likelihood framework [13], incorporating the
published mammalian species tree [14-16]. This analysis
(the Free Ratio model) revealed that the dN/dS value on
the bat lineage (0.96) was four times greater than the
mammalian average (Figure 1). The higher dN/dS ratios
leading to bats (Table 2) during mammalian evolution
accord with the growing body of data [5,6,17,18] that the
newly emerged MERS-CoV ultimately has a bat-origin.
We next analysed the selection pressures at individual

amino acid sites in bat DPP4. Using the Bayesian FUBAR
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Figure 1 Selection pressures on DPP4 during mammalian
evolution. Ratios of nonsynonymous (dN) to synonymous (dS)
nucleotide substitutions per site (dN/dS) are shown on four major
ancestral branches; dN and dS numbers are also given in parentheses.
Values for individual lineages are given in Table 2. DPP4 sequences of
bat origin are shaded.

Table 2 Numbers of nonsynonymous (dN) and synonymous
(dS) substitutions per site DPP4 genes in different mammals

Common name dN dS dN/dS

Sheep 0.004 0.013 0.280

Killer whale 0.023 0.039 0.595

Cow 0.003 0.016 0.157

Pig 0.027 0.109 0.246

Pacific walrus 0.014 0.053 0.260

Ferret 0.015 0.064 0.235

Cat 0.021 0.081 0.258

Horse 0.016 0.055 0.290

Rhinoceros 0.017 0.044 0.385

Large flying fox 0.005 0.001 3.561

Black flying fox 0.004 0.008 0.487

Common vampire bat 0.042 0.125 0.500

Brandt’s bat 0.006 0.012 0.463

David’s myotis 0.010 0.028 0.380

Little brown bat 0.007 0.007 0.943

Common pipistrelle 0.031 0.066 0.470

Guinea pig 0.018 0.078 0.238

Degu 0.016 0.128 0.122

Lesser Egyptian jerboa 0.023 0.179 0.131

Mouse 0.019 0.093 0.206

Rat 0.027 0.110 0.248

Human 0.001 0.007 0.086

Chimpanzee 0.000 0.002 0.000

Pygmy chimpanzee 0.001 0.000 ND

Gorilla 0.003 0.004 0.863

Orangutan 0.002 0.000 ND

Gibbon 0.003 0.009 0.344

Olive baboon 0.000 0.005 0.000

Rhesus monkey 0.000 0.004 0.000

Galago 0.022 0.149 0.149

Marmoset 0.009 0.053 0.160

American pika 0.036 0.229 0.156

ND: Not determined because no synonymous substitutions are present.

Table 3 Putatively positive selected DPP4 codons in bats

Codon positiona Posterior probabilityb dN/dS

46 0.97 14.95

57 0.97 13.13

112 0.94 10.27

187 0.95 8.55

288 0.98 13.90

392 0.97 14.63
aCodon position corresponding to the human DPP4 (NP_001926) protein sequence.
bPosterior probability of residues assigned a dN/dS ratio greater than 1.
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method [19] in HyPhy package [20], we identified six
codons that were assigned dN/dS > 1 with higher poster-
ior probability (a strict cut-off of 95% in this analysis)
(Table 3). To identify those sites under positive selection
that may interact directly with MERS-CoV-like spike
protein, bat DPP4 (from the common pipistrelle) was
modelled against the structure of the human DPP4/
MERS-CoV spike complex [21] (Figure 2A). This revealed
that three of the six positive selected residues (position
187, 288 and 392) were located at the interface between
bat DPP4 and MERS-CoV RBD (receptor binding do-
main) (Figure 2). These residues therefore provide direct
evidence of a long-term co-evolutionary history between
viruses and their hosts. We also observed several variable
regions (Figure 2B) within the bat RBD, that may also have
resulted from virally-induced selection pressure and which
merit additional investigation in a larger data set.
Our analysis therefore suggests that the evolutionary

lineage leading to current MERS-CoV co-evolved with
bat hosts for an extended time period, eventually
jumping species boundaries to infect humans and perhaps
through an intermediate host. As such, the emergence of



Figure 2 Interaction of bat DPP4 and MERS-CoV spike protein receptor-binding domain and the location of positively selected sites.
The structure was displayed using PyMol v1.6 (http://www.pymol.org/). (A) Homology model showing the structural interactions between bat
DPP4 (from common pipistrelle) coloured grey and MERS-CoV spike protein receptor-binding domain coloured blue. The three positively selected
residues (positions 187, 288 and 392) located within the interface where the virus-host interact are highlighted as red. (B) Protein alignment of
human DPP4 compared to that of seven bat species showing RBD spanning codons 41 – 400. Conserved and variable positions are shown in
black and grey text, respectively, and residues under positive selection are coloured red.
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MERS-CoV may parallel that of the related SARS-CoV
[22]. Although one bat species, Taphozous erforatus, in
Saudi Arabia has been found to harbour a small RdRp
(RNA-Dependent RNA Polymerase) fragment of MERS-
CoV [17], a larger viral sampling of bats and other animals
with close exposure to humans, including dromedary
camels were serological evidence for MERS-CoV has been
identified [23], are clearly needed to better understand the
viral transmission route. Alternatively, it is possible that
the adaptive evolution present on the bat DPP4 was due
to viruses other than MERS-CoVs, and which will need to
be better assessed when a larger number of viruses are
available for analysis. Overall, our study provides evidence
that a long-term evolutionary arms race likely occurred
between MERS related CoVs and bats.
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