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Abstract

The disproportionate imbalance between the systemic manifestation of reactive oxygen species and body’s ability
to detoxify the reactive intermediates is referred to as oxidative stress. Several biological processes as well as
infectious agents, physiological or environmental stress, and perturbed antioxidant response can promote oxidative
stress. Oxidative stress usually happens when cells are exposed to more electrically charged reactive oxygen species
(ROS) such as H2O2 or O2-. The cells’ ability to handle such pro-oxidant species is impeded by viral infections
particularly within liver that plays an important role in metabolism and detoxification of harmful substances. During
liver diseases (such as hepatocellular or cholestatic problems), the produced ROS are involved in transcriptional
activation of a large number of cytokines and growth factors, and continued production of ROS and Reactive
Nitrogen Species (RNS) feed into the vicious cycle. Many human viruses like HCV are evolved to manipulate this
delicate pro- and antioxidant balance; thus generating the sustainable oxidative stress that not only causes hepatic
damage but also stimulates the processes to reduce treatment of damage. In this review article, the oxidant and
antioxidant pathways that are perturbed by HCV genes are discussed. In the first line of risk, the pathways of lipid
metabolism present a clear danger in accumulation of viral induced ROS. Viral infection leads to decrease in cellular
concentrations of glutathione (GSH) resulting in oxidation of important components of cells such as proteins, DNA
and lipids as well as double strand breakage of DNA. These disorders have the tendency to lead the cells toward
cirrhosis and hepatocellular carcinoma in adults due to constant insult. We have highlighted the importance of
such pathways and revealed differences in the extent of oxidative stress caused by HCV infection.
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Background
In biological system, the oxidative stress refers to the
physiological disturbance between the ROS such as H2O2
or O2- and the ability of the body to remove them. Oxi-
dative stress also promotes nitrosative stress caused by
reactive nitrogen species resulting in perturbed cellular
signaling and cellular damage. Some of the viral infec-
tions such as HCV infections decrease the cell’s ability
to work against such pro-oxidant species especially in
liver [1]. Oxidative stress can also be defined as the
disordered redox signaling and control [2].
A variety of ROS are produced throughout the body,

which are found to be the by-products of cellular metab-
olism, and play an important role in cell signaling and
regulation of cytokine, growth factor and hormone
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reproduction in any medium, provided the or
action, transcription, ion transport, neuromodulation,
immunemodulation and apoptosis [3,4]. In particular,
they play a fundamental role in normal functioning of
immune system and proliferation of T cells and im-
munological defence [5,6].
One particular species of interest; superoxide (O2-), is

generated either by accidental result of incomplete elec-
tron transfers in the electron transport chain or by
design in activated white blood cells with the function of
destroying pathogens. Upon production, O2- molecules
are rapidly metabolized into hydrogen peroxide (H2O2),
which further helps in destroying some pathogens. Inter-
mediate concentrations of H2O2 (and certain other
ROS) result in activation of nuclear factor κB (NF-κB),
and activating protein-1 (AP-1), which are transcription
factors that up-regulate several antioxidant pathways. They
are neutralized by the activity of key antioxidant genes
such as Manganese, Magnesium or Copper Superoxide
dismutase (Mn, Mg or Cu-SOD) [7].
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ROS and oxidative stress
ROS are usually produced during the processes of aerobic
metabolism, ongoing stress, and exposure to UV light or
X-rays. They play an important role in many of the signal-
ing reactions in different organisms from bacteria to mam-
malian cells. These were previously considered as only the
toxic by-products but now they are also known to work in
complex signaling network of cells [8].
Many different enzymes in mitochondria, endoplasmic

reticulum, peroxisomes and other cell compartments are
involved in synthesis of ROS [9,10] that causes cellular
stress either through direct interaction with the biological
molecules such as proteins, lipids and nucleic acids, or
through activation of classical signaling cascades involved
in stress responses including protein kinases, cytokines,
and transcription factors [8,11] leading to inflammatory
responses.

Role of mitochondria and endoplasmic reticulum in
oxidative stress
Mitochondria generate ROS as a by-product of ATP
synthesis via oxidative phosphorylation that may cause
oxidative injury to mitochondrial DNA (mtDNA) [12,13].
Different oxidative stress conditions usually result in
various diseases associated with alteration or depletion of
mtDNA copy numbers [14-17].
HCV also changes the steady-state levels of a mito-

chondrial protein chaperone, referred to as prohibitin,
that disturbs the mitochondrial respiratory chain leading
to overproduction of ROS [18].
Endoplasmic reticulum (ER) is an organelle in the cells

that is responsible for folding of proteins. Researchers
are of the opinion that protein oxidation in ER results in
protein folding and production of ROS that results in
oxidative stress. ER is also the primary storage site for
calcium that is required for protein folding reactions
[19]. Researchers reported that oxidative stress may result
in elevated leakage of calcium from ER lumen and the same
thing happens in ER stress [20-22]. As more calcium comes
in cytosol, mitochondrial ROS production increases [19].

Role of hepatitis C virus (HCV) in oxidative stress
Hepatitis C virus (HCV) belongs to Flaviviridae family of
RNA viruses having positive strand RNA genome [23] of
approximately 9400 bp in length [24]. HCV results in 3–
4 million new cases of viral hepatitis annually. Nearly
150 million people are chronically infected having a risk
of liver cirrhosis and/or liver cancer [25]. In the mid
1990s, researchers found the occurrence of oxidative
stress during chronic hepatitis C [26].
Although viral replication mostly takes place in the

hepatocytes but HCV potentially attacks the cells of the
immune system and propagates there. In this case,
lymphocytes are found to be involved in the occult –
occult HCV infection (OHCI) – and active forms of dis-
ease. OHCI causes phosphoinositol 3-kinase-mediated
cellular response in peripheral blood lymphocytes after
mitochondrial oxidative stress and damage to DNA
double strands. OHCI has been found to be related to
increased risk of developing hepatocellular carcinoma
and lymphoproliferative disorders [27].
Researchers reported that in chronic hepatitis, immun-

ity initiates the production of ROS [28] and nitric oxide
(NO) [29]. This was further reported by Farinati et al.
that HCV produces more ROS than other hepatitis vi-
ruses [30] and patients with chronic hepatitis C have
over 80% chances of developing chronic diseases (CHC)
as compared to patients of hepatitis A, B and E [31]. An
increase in the amount of ROS by two to five orders of
magnitude in liver tissue from CHC patients have also
been reported [32,33] and significant increase in lympho-
cytes of patients with chronic and OHCI [27].
HCV replicates in cytoplasm and results in chronic

infections that may finally cause chronic hepatitis, cir-
rhosis, and hepatocellular carcinoma (HCC) [34,35]. The
extent of mitochondrial injury and severity of oxidative
injury exerted in liver tissue represent severity of HCV
infection [36]. Oxidative stress has also been found to
play an important role in HCV genome translation that
is found to be mediated via PERK-mediated inhibition of
cap-dependent translation [26]. Previously researchers
found that ROS induced viral genome heterogeneity is
the probable mechanism for viral escape from the
immune system [37].

HCV proteins associated with oxidative stress
HCV viral nucleocapsid protein, an HCV core protein,
has been found to increase the oxidative stress in liver
[38]. Out of 10 viral proteins, the core protein is the
strongest regulator [39,40] but is not the only one asso-
ciated with increased oxidative stress as NS3, or NS5A
proteins have also been found to increase the oxidative
stress [41-43]. In further studies, researchers found that
E1 [39], E2 [29,44], and NS4B [39,45] are also involved
in oxidative stress.
The nonstructural protein 5A (NS5A), which is an inte-

gral membrane protein important for replication of virus
along with other important phenomenon such as inter-
feron resistance, and apoptosis [46], encoded by human
HCV RNA genome, changes the calcium levels. The core,
NS5A, and NS3 proteins not only increase calcium uptake
by mitochondria but also cause oxidation of mitochondrial
glutathione leading to increased ROS [13,47,48] in mito-
chondria resulting in translocation of NF-κB and STAT-3
transcription factors into the nucleus leading to oxidative
stress. Antioxidants remove NS5A-induced activation of
NF-κB and STAT-3 [49,50]. NS4B also increases the trans-
location of NF-κB into the nucleus through protein-
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tyrosine kinase (PTK) mediated phosphorylation and sub-
sequent degradation of κB alpha [45]. Basic points of viral
proteins involved in oxidative stress are mentioned in the
Table 1.
NS5A protein has also been found to play an important

role in activation of p38 MAPK (mitogen-activated protein
kinase), JNK (c-Jun N-terminal kinase) and AP-1 (activa-
tor protein-1) that are linked to increased oxidative stress
leading to increased MnSOD (manganese-superoxide
dismutase) antioxidant responses [1].
Along with ROS, NO also causes oxidative DNA dam-

age. NO not only damages DNA but also inhibits DNA
repair [51-53] as shown in Figure 1. The Casein kinase 2
and phosphoinositide-3 kinase mediates the effect of core
and NS5A proteins [39].
Effect of HCV on the enzymes
Research showed increased levels of some of the
defense enzymes such as heme oxygenase (HO-1) [54]
and thioredoxin (Trx) [55,56] in patients of CHC.
HCV also poses danger to antioxidant systems in the
body such as HO-1 and NADH dehydrogenase quin-
one 1 [18] that may lead to increased oxidative stress
in liver during infections caused by HCV. In addition
to these, researchers found decreased levels of many
other antioxidant defense enzymes, such as manganese
or Cu/Zn superoxide dismutase (SOD), glutathione re-
ductase, and glutathione peroxidase, in the peripheral
blood mononuclear cells (PBMC) of the patients of
CHC [27,57,58].
HCV induces the expression of 3β-hydroxysterol Δ24-

reductase (DHCR24) as 5′-flanking genomic promoter
region of DHCR24 is responsive to HCV. This region
also binds Sp1 transcription factor in response to oxida-
tive stress under the regulation of ataxia telangiectasia
mutated (ATM) kinase. Overexpression of DHCR24 de-
creases acetylation resulting in disturbed p53 activity lead-
ing to suppressed hydrogen peroxide-induced apoptotic
response in hepatocytes [59].
HCV also acts as a regulator of Nox4, a member of the

NADPH oxidase (Nox) family, inducing ROS production
through autocrine transforming growth factor β (TGF-β)-
dependent mechanism [60]. ROS are found to have an
important influence on development of inflammatory
liver disease mediated by HCV [61,62].
Table 1 HCV proteins involved in oxidative stress

HCV proteins What they can do?

Core protein, NS3, NS5A,
E1, E2, NS4B

• Increase oxidative stress

Core protein, NS5A, NS3

• Increase calcium uptake by mitochondria

• Oxidation of mitochondrial glutathione
leading to elevated ROS
Iron and the oxidative stress
Iron has also been found to play an important role in
oxidative stress. Fenton’s reaction, which causes the con-
version of low active H2O2 into potential hydroxyl and
peroxide radicals, helps iron ions in ROS production
[10,63]. Iron is present in many parts of the body and
liver is one of the main sites of storage [64-66], thereby
increased iron ions could result in more oxidative stress
in liver cells. Usually the concentration of iron in plasma
in humans remain stable at 10–30 μM [64] but nearly
40% of CHC patients showed elevated levels of iron and
ferritin in serum and 10% of patients showed elevated
levels of iron in liver [67]. Researchers found that phle-
botomy or dietary iron restriction decreases oxidative
stress and lipid peroxidation in CHC patients [68,69].

Protection
Human body is specially developed to work against oxi-
dative stress [70,71]. The defense system of the body
consists of low molecular weight compounds such as
glutathione and other antioxidants along with “phase II
defense enzymes” that are capable of getting rid of ROS.

Glutathione
Glutathione is synthesized in all types of eukaryotic cells
and especially found in liver. It is considered as one of
the most important anti-oxidants. It is also a redox and
cell signaling regulator, and works by decreasing H2O2
level and by scavenging reactive oxygen and nitrogen
radicals [72]. Researchers found decreased glutathione
levels in a large number of CHC patients [26].
Recently, researchers have reported that glutathione,

which is usually oxidized in oxidation stress to prevent
cellular components from reactive oxygen species, moves
towards vacuole by ABC-C transporter Ycf1 rather than
staying in the cytoplasm. This movement of the oxidized
glutathione to the vacuole protects the cellular metabolic
processes of cytoplasm from the oxidative damage. This
finding also shows that the conventional methods of deter-
mining oxidative stress have to be re-evaluated as the cells
could have been under oxidative stress even when the
cytoplasm looks healthy [73].
Researchers found that a by-product of glutathione;

N-acetylcysteine (NAC), also decreases oxidative stress
[74,75]. Some “Oxidative stress” related processes are
presented in Figure 2.

Nrf2
A transcription factor protein, namely Nrf2, controls the
cell’s ability to cope with oxidative stress by elevating the
expression of key genes for eliminating the damaged
proteins. During elevated oxidative stress, Nrf2 increases
the production of 20 S proteasome and also affects the
Pa28αβ (11 S) proteasome regulator (Pa28) helping in



Figure 1 HCV infection and DNA damage.
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the breakdown of oxidized proteins that could destroy
the cells after accumulation [76]. Nrf2 protein has also
been found to be related to stem cell division [77]. In
another study, this protein has been found to be related
to the increased chances of atherosclerosis due to in-
creased plasma cholesterol levels and the cholesterol
content in liver [78]. It has been reported that activation
of Nrf2, as a result of HCV, is mediated by the mitogen-
Figure 2 Oxidative stress related processes.
activated protein (MAP) kinases p38 MAPK and janus
kinase [79].
The antioxidant defense Nrf2/ARE pathway is mediated

by five viral proteins, i.e., core, E1, E2, NS4B, and NS5A.
The core protein is found to be the most potent regulator
[80]. However, in another contradictory study, researchers
found the suppressed Nrf2/ARE pathway in the HCVcc
system [81]. The reasons for this contradiction are not
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known although the researchers used the similar infection
conditions.
MDA and complement factor H
The lipids in cell membranes produce many of the reactive
products upon oxidative stress. One of those compounds
is malondialdehyde (MDA) that changes other molecules
to produce novel oxidation-specific epitopes that takes the
attention and inflammatory reaction of the innate immune
system. MDA is also found to attract an immune system
protein called complement factor H (CFH) that stops the
uptake of MDA-modified proteins by macrophages after
binding to MDA. This resulted in neutralization of inflam-
matory effects of MDA in mice model [82]. Presently
known mechanisms of Nrf2 and Complement Factor H
are presented in the Figure 3.
HNF and MRP2
Qadri et al. reported that HCV induces the hepatocyte
nuclear factor (HNF)-1 and HNF4, and this process has
been attributed to the elevated oxidative stress as well
Figure 3 Oxidative stress and self-defense mechanisms.
as the direct interaction of NS5A protein and HNF1.
Both HNF1 and HNF4 are considered as the important
transcriptional factors for the normal development of
the liver. This HNF1 activation results in increased
MRP (multidrug resistance protein)-2 activity that plays
an important role in the detoxification process associ-
ated with oxidative stress [83].
PARP1 and SIRT6
A protein, sirtuin 6 (SIRT6), is produced maximally under
oxidative stress. This protein along with poly [adenosine
diphosphate (ADP)–ribose] polymerase 1 (PARP1) protein
helps in repair of double strand breaks. PARP1 is an en-
zyme that is among the first compounds responding to
DNA damage. SIRT6 is helpful in DNA repair even in
the absence of oxidative stress. Researchers found that
increased levels of SIRT6 help in more rapid direction
of the DNA repair enzymes towards the sites of damage
thereby increase the restoration of double strand breaks
[84]. The role of prohibitin and SIRT6 are presented in
the Figure 4.



Figure 4 Role of prohibitin and SIRT6 in oxidative stress.
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Future directions
There is no doubt that oxidative stress plays an important
role in HCV pathogenesis, therefore the combination of
several mechanisms described above could be exploited to
reach the new solutions of combating the oxidative stress
in HCV infection. Antioxidants may be employed in 4 dif-
ferent ways 1) to impair in HCV replication 2) to improve
liver enzyme levels, 3) to protect against liver cell damage
and 4) to render interferon anti-viral therapy more effect-
ive. In fact, triple antioxidants therapies are on rise, which
include such as alpha-lipoic acid, silymarin and selenium
in suppressing HCV-induced liver disease [85], when
used together with Vitamins C and E, and in a healthy
diet and exercise regime [86]. Hypolipidemic agent,
nordihydroguairetic acid which is also a potential anti-
oxidant has been shown to affect lipid droplet morph-
ology and HCV propagation [87]. MnSOD are shown to
be the prime candidates for reversal of HCV-induced fi-
brosis [88] and activation of NFkB may be another way
to boost antioxidant MnSOD response [89]. In a phase
II study of HCV patients, the mitochondria-targeted
anti-oxidant mitoquinone is shown to decrease liver
damage [90].
Researchers showed that peripheral blood leukocyte

mtDNA copy number and oxidative stress could help in
assessment of mitochondrial damage in HCV-infected
patients but it needs further work, whether they can be
utilized to evaluate the activity or severity of the HCV-
related liver diseases. The clinical significance of damage
to mtDNA between the occult and overt HCV-infected
patients needs further research. Moreover, the changes
in mtDNA damage with time in different HCV-infected
patients and the risk of consequent hepatocellular car-
cinoma needs further studies [13]. Role of oxidative
stress on HCV entry and particle assembly and release
needs more research in which HCV cell entry is thought
to be a multi-step process [91].
Another important thing that needs further research is

the role of antioxidant defense systems against HCV as
researchers found some contradictory results such as in
the case of antioxidant Defense Nrf2/ARE Pathway [26].
Oxidative stress, in mouse model, has also been found to
be related to the expression of misfolded human alpha-1-
antitrypsin mutant Z protein but the mechanism, which
can be more than one, are still not clear. Moreover, the
effects of different levels of monomer, non-globular
polymer or globular forms on oxidative stress need
further research [92].
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